Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomed Opt ; 29(5): 052919, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38420109

RESUMEN

Significance: Most biological fibrous tissues have anisotropic optical characteristics, which originate from scattering by their fibrous microstructures and birefringence of biological macromolecules. The orientation-related anisotropic interpretation is of great value in biological tissue characterization and pathological diagnosis. Aim: We focus on intrinsic birefringence and form birefringence in biological tissue samples. By observing and comparing the forward Mueller matrix of typical samples, we can understand the interpretation ability of orientation-related polarization parameters and further distinguish the sources and trends of anisotropy in tissues. Approach: For glass fiber, silk fiber, skeletal muscle, and tendon, we construct a forward measuring device to obtain the Mueller matrix image and calculate the anisotropic parameters related to orientation. The statistical analysis method based on polar coordinates can effectively analyze the difference in anisotropic parameters. Results: For those birefringent fibers, the statistical distribution of fast-axis values derived from Mueller matrix polar decomposition was found to exhibit bimodal characteristics, which is a key point in distinguishing the single-layer birefringent fiber sample from a layered, multioriented fibrous sample. The application conditions and interference factors of anisotropic orientation parameters are analyzed. Based on the parameters extracted from the orientation bimodal distribution, we can evaluate the relative change trend of intrinsic birefringence and form birefringence in anisotropic samples. Conclusions: The cross-vertical bimodal distribution of the fast axis of anisotropic fibers is beneficial to accurately analyze the anisotropic changes in biological tissues. The results imply the potential of anisotropic orientation analysis for applications in pathological diagnosis.


Asunto(s)
Músculo Esquelético , Tendones , Anisotropía , Tendones/diagnóstico por imagen , Birrefringencia
2.
ACS Omega ; 8(33): 30024-30036, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37636920

RESUMEN

To investigate the influence of the lamina effect on the tensile strength of shallow marine shales and improve the shortcomings of the existing Brazilian standard disc splitting method, the Lamina shale of the Upper Ordovician Wulalik Fm in the western margin of the Ordos Basin was selected as the experimental object. Based on the radial wave velocity anisotropy test, the direction of crustal stress was determined, and standard cores were drilled. The Brazilian standard disc splitting experiment on Lamina shale with different loading angles was designed and carried out. The influence of lamina on the tensile strength of shale was summarized, and an improved calculation method of tensile strength was proposed. The experimental results indicate that the presence of lamina makes the tensile strength of shallow marine shale exhibit significant anisotropy, and the fracture surface morphology of standard discs under different loading angles varies greatly. The overall failure characteristics can be classified into two types: linear and curved. When the loading angle is 0° or 90°, the fracture surface of the disc belongs to tensile failure (linear type), and the traditional splitting method has good applicability. When the loading angle is greater than 0° and less than 90°, the fracture surface of the disc belongs to tensile shear failure (curve type), and traditional splitting methods are not applicable. There is a difference in tensile strength between vertical and horizontal wells, and vertical wells should consider the comprehensive tensile strength of the rock matrix and lamina at a 90° loading angle. Horizontal wells should consider the tensile strength of the weak lamina plane with a loading angle of 0°. The improved Brazilian splitting method solves the problem of the traditional method, calculating lower tensile strength values when the loading angle is greater than 0° and less than 90°. This provides important basic data support for wellbore stability evaluation and reservoir stimulation transformation.

3.
Appl Opt ; 60(22): 6682-6694, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34612912

RESUMEN

Different from conventional microimaging techniques, polarization imaging can generate multiple polarization images in a single perspective by changing the polarization angle. However, how to efficiently fuse the information in these multiple polarization images by a convolutional neural network (CNN) is still a challenging problem. In this paper, we propose a hybrid 3D-2D convolutional neural network called MuellerNet, to classify biological cells with Mueller matrix images (MMIs). The MuellerNet includes a normal stream and a polarimetric stream, in which the first Mueller matrix image is taken as the input of normal stream, and the rest MMIs are stacked to form the input of a polarimetric stream. The normal stream is mainly constructed with a backbone network and, in the polarimetric stream, the attention mechanism is used to adaptively assign weights to different convolutional maps. To improve the network's discrimination, a loss function is introduced to simultaneously optimize parameters of the two streams. Two Mueller matrix image datasets are built, which include four types of breast cancer cells and three types of algal cells, respectively. Experiments are conducted on these two datasets with many well-known and recent networks. Results show that the proposed network efficiently improves the classification accuracy and helps to find discriminative features in MMIs.

4.
Opt Lett ; 46(15): 3645-3648, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34329245

RESUMEN

An effective method to calculate the statistical Mueller matrix (SMM) of suspended particles based on polarized light scattering is presented that takes advantage of the Stokes vectors measurement of individual particles. The calculation method of the SMM is derived based on statistics. Experimental results of Microcystis samples confirm that the SMM can characterize cells of different states. Then, pairwise contrast experiments indicate the great prospect of the SMM applied on the discrimination of suspended particles. It helps to find the optimal incident polarization state to discriminate suspended particles, and it has optimal discrimination ability. The parameter derived from the SMM can simultaneously discriminate particles including microalgae, microplastics, and sand-like particles.

5.
Appl Opt ; 59(31): 9698-9709, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33175806

RESUMEN

In this paper, we used a convolutional neural network to study the classification of marine microalgae by using low-resolution Mueller matrix images. Mueller matrix images of 12 species of algae from 5 families were measured by a Mueller matrix microscopy with an LED light source at 514 nm wavelength. The data sets of seven resolution levels were generated by the bicubic interpolation algorithm. We conducted two groups of classification experiments; one group classified the algae into 12 classes according to species category, and the other group classified the algae into 5 classes according to family category. In each group of classification experiments, we compared the classification results of the Mueller matrix images with those of the first element (M11) images. The classification accuracy of Mueller matrix images declines gently with the decrease of image resolution, while the accuracy of M11 images declines sharply. The classification accuracy of Mueller matrix images is higher than that of M11 images at each resolution level. At the lowest resolution level, the accuracy of 12-class classification and 5-class classification of full Mueller matrix images is 29.89% and 35.83% higher than those of M11 images, respectively. In addition, we also found that the polarization information of different species had different contributions to the classification. These results show that the polarization information can greatly improve the classification accuracy of low-resolution microalgal images.


Asunto(s)
Microalgas/clasificación , Microscopía de Polarización/métodos , Redes Neurales de la Computación , Algoritmos , Interpretación de Imagen Asistida por Computador/métodos , Luz , Microalgas/citología , Imagen Óptica/métodos
6.
Sensors (Basel) ; 20(15)2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32727053

RESUMEN

The vertical migration trend of cyanobacterial cells with gas vesicles in water ecosystems can reflect the changes in the natural environment, such as temperature, nutrients, light conditions, etc. The static pressure treatment is one of the most important approaches to study the properties of the cyanobacterial cell and its gas vesicles. In this paper, a polarized light scattering method is used to probe the collapse and regeneration of the cyanobacterial gas vesicles exposed to different static pressures. During the course, both the axenic and wild type strain of cyanobacterial Microcystis were first treated with different static pressures and then recovered on the normal light conditions. Combining the observation of transmission electron microscopy and floating-sinking photos, the results showed that the collapse and regeneration of the cyanobacterial gas vesicles exposed to different static pressures can be characterized by the polarization parameters. The turbidity as a traditional indicator of gas vesicles but subjected to the concentration of the sample was also measured and found to be correlated with the polarization parameters. More analysis indicated that the polarization parameters are more sensitive and characteristic. The polarized light scattering method can be used to probe the cyanobacterial gas vesicles exposed to different static pressures, which has the potential to provide an in situ rapid and damage-free monitoring tool for observing the vertical migration of cyanobacterial cells and forecasting cyanobacterial blooms.


Asunto(s)
Microcystis , Ecosistema , Gases
7.
Opt Express ; 26(17): 22419-22431, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30130936

RESUMEN

Probing suspended particles in seawater, such as microalgae, microplastics and silts, is very important for environmental monitoring and ecological research. We propose a method based on polarized light scattering to differentiate different suspended particles massively and rapidly. The optical path follows a similar design of a commonly used marine instrument, BB9, which records backscattering of non-polarized light at 120°. In addition, polarization elements are added to the incident and scattering path for taking polarization measurements. Experiments with polystyrene microspheres, porous polystyrene microspheres, silicon dioxide microspheres, and different marine microalgae show that by carefully choosing the incident polarization state and analyzing the polarization features of the scattered light at 120°, these particles can be effectively differentiated. Simulations based on the Mie scattering theory and discrete dipole approximation (DDA) have also been conducted for particles of different sizes, shapes and refractive indices, which help to understand the relationship between the polarization features and the physical properties of the particles. The laboratory system may serve as a prove-of-concept prototype of new instrumentations for applications on board or even with submersibles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...