Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38062753

RESUMEN

To investigate the effects and underlying molecular mechanisms of the interaction between the non-structural protein 1 (NS1) and nucleolar and coiled-body phosphoprotein 1 (NOLC1) on rRNA synthesis through nucleolar telomeric repeat-binding factor 2 (TRF2) under nucleolar stress in avian influenza A virus infection. The analysis of TRF2 ties into the exploration of ribosomal protein L11 (RPL11) and mouse double minute 2 (MDM2) because TRF2 has been found to interact with NOLC1, and the RPL11-MDM2 pathway plays an important role in nucleolar regulation and cellular processes. Both human embryonic kidney 293T cells and human lung adenocarcinoma A549 cells were transfected with the plasmids pCAGGS-HA and pCAGGS-HA-NS1, respectively. In addition, A549 cells were transfected with the plasmids pEGFP-N1, pEGFP-N1-NS1, and pDsRed2-N1-TRF2. The cell cycle was detected by flow cytometry, and coimmunoprecipitation was applied to examine the interactions between different proteins. The effect of NS1 on TRF2 was detected by immunoprecipitation, and the colocalization of NOLC1 and TRF2 or NS1 and TRF2 was visualized by immunofluorescence. Quantitative real-time PCR was conducted to detect the expression of the TRF2 and p21. There is a strong interaction between NOLC1 and TRF2, and the colocalization of NOLC1 and TRF2 in the nucleus. The protein expression of NOLC1 in A549-HA-NS1 cells was lower than that in A549-HA cells, which was accompanied by the upregulated protein expression of p53 in A549-HA-NS1 cells (all p < .05). TRF2 was scattered throughout the nucleus without clear nucleolar aggregation. RPL11 specifically interacted with MDM2 in the NS1 group, and expression of the p21 gene was significantly increased in the HA-NS1 group compared with the HA group (p < .01). NS1 protein can lead to the reduced aggregation of TRF2 in the nucleolus, inhibition of rRNA expression, and cell cycle blockade by interfering with the NOLC1 protein and generating nucleolar stress.

2.
Xenobiotica ; 53(12): 670-680, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37971898

RESUMEN

Maintaining proper blood flow is critical to promoting good health. Nattokinase is a serine protease from Bacillus subtilis that has significant in vitro thrombolytic activity, but its mechanism as a dietary supplement to prevent thrombosis through intestinal absorption and transport is still unclear.The purpose of this study is to study the transport and internalisation mechanism of NK in the small intestine using animal models and Caco-2 cell monolayer models.This study first evaluated the preventive effect of supplementing low dose (4000 FU (Fibrin Unit)/kg, n = 6), medium dose (8000 FU/kg, n = 6), and high dose (12000 FU/kg, n = 6) of nattokinase on carrageenan induced thrombosis in mice. Subsequently, we used the rat gut sac model, ligated intestinal loop model, and Caco-2 cell uptake model to study the intestinal transport mechanism of NK.Results indicate that NK is a moderately absorbed biomolecule whose transport through enterocytes is energy- and time-dependent. Chlorpromazine, nystatin and EIPA all inhibited the endocytosis of NK to varying degrees, indicating that the endocytosis of NK in Caco-2 cells involves macropinocytosis, clathrin-mediated and caveolae-mediated pathway. These findings offer a theoretical basis for investigating the mechanism of oral NK supplementation in greater depth.


Asunto(s)
Intestino Delgado , Trombosis , Humanos , Ratas , Ratones , Animales , Células CACO-2 , Suplementos Dietéticos
3.
Oncol Rep ; 50(4)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37615195

RESUMEN

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that the tumour images shown in Fig. 7A and certain of the cell proliferation assay images shown in Fig. 3B were strikingly similar to data that had already appeared in another article written by different authors at different research institutes [Xiao W Wang, J, Li H, Xia D, Yu G, Yao W, Yang Y, Xiao H, Lang B, Ma X et al: Fibulin­1 is epigenetically down­regulated and related with bladder cancer recurrence. BMC Cancer 14: 677, 2014]. Owing to the fact that the contentious data in the above article had already been published prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncol Rep 38: 2435­2443, 2017; DOI: 10.3892/or.2017.5884].

5.
Sci Rep ; 13(1): 8822, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258567

RESUMEN

Oxidative stress, as a characteristic of cellular aerobic metabolism, plays a crucial regulatory role in the development and metastasis of gastric cancer (GC). Long noncoding RNAs (lncRNAs) are important regulators in GC development. However, research on the prognostic patterns of oxidative stress-related lncRNAs (OSRLs) and their functions in the immune microenvironment is currently insufficient. We identified the OSRLs signature (DIP2A-IT1, DUXAP8, TP53TG1, SNHG5, AC091057.1, AL355001.1, ARRDC1-AS1, and COLCA1) from 185 oxidative stress-related genes in The Cancer Genome Atlas (TCGA) cohort via random survival forest and Cox analyses, and the results were subsequently validated in the Gene Expression Omnibus (GEO) dataset. The patients were divided into high- and low-risk groups by the risk score of the OSRLs signature. Longer overall survival was detected in the low-risk group than in the high-risk group in both the TCGA cohort (P < 0. 001, HR = 0.43, 95% CI 0.31-0.62) and the GEO cohort (P = 0.014, HR = 0.67, 95% CI 0.48-0.93). Next, multivariate Cox analysis identified that the risk model was an independent prognostic characteristic (HR > 1, P = 0.005), and time-dependent receiver operating characteristic (ROC) curve analysis and nomogram analysis were utilized to evaluate the predictive ability of the risk model. Next, gene set enrichment analysis revealed that the immune-related pathway, Wnt/[Formula: see text]-catenin signature, mammalian target of rapamycin complex 1 signature, and cytokine‒cytokine receptor interaction was enriched. High-risk patients were more responsive to CD200, TNFSF4, TNFSF9, and BTNL2 immune checkpoint blockade. The results of qRT‒PCR further proved the accuracy of our bioinformatic analysis. Overall, our study identified a novel OSRLs signature that can serve as a promising biomarker and prognostic indicator, which provides a personalized predictive approach for patient prognosis evaluation and treatment.


Asunto(s)
ARN Largo no Codificante , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , ARN Largo no Codificante/genética , Pronóstico , Estrés Oxidativo/genética , Inmunidad , Microambiente Tumoral/genética , Ligando OX40 , Butirofilinas
7.
Environ Sci Pollut Res Int ; 30(12): 34623-34635, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36515875

RESUMEN

The 7d unconfined compressive strength tests of alkali-activated tungsten tailings and the microscopic characteristics tests of scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) were conducted to investigate the effect of alkali-solid ratio on the properties of alkali-activated tungsten tailings. The test results indicate that the unconfined compressive strength of alkali-activated tungsten tailings increased with the alkali-solid ratio. However, the strength decreases slightly when the alkali-solid ratio is 12%. The microstructures of the gels generated in the alkali-activated tungsten tailings are affected by the alkali-solid ratio. The details are as follows: the microstructure is honeycomb in low alkali-solid ratio (7%, 8% and 10%), with N-A-S-H as its primary form, and flocculation in high alkali-solid ratio (14% and 15%), mainly in the form of C-A-S-H. When the alkali-solid ratio is at the medium level (12%), the microstructure is a small round bead, and the N-A-S-H is equivalent to the C-A-S-H. The more C-A-S-H content, the greater the strength. This study can provide a scientific basis and technical reference for the resource utilization of tungsten tailings.


Asunto(s)
Álcalis , Tungsteno , Álcalis/química , Difracción de Rayos X , Fuerza Compresiva , Espectroscopía Infrarroja por Transformada de Fourier
8.
Oncol Rep ; 49(1)2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36484414

RESUMEN

Subsequently to the publication of the above article, the authors have alerted the Editorial Office to the fact that they identified a small number of errors concerning the assembly of Figs. 3A, 6B and 7A in their paper. Specifically, the western blotting results for the BCL­3 and GAPDH experiments in Fig. 3A, the cyclin D1 blots in Fig. 6B and the cyclin D1 blots shown in Fig. 7A were selected erroneously when choosing images from the total pool of data due to the similarity in the appearance of the data. However, the authors retained their access to the raw data, and were able to make the appropriate corrections required for these figures. The corrected versions of Figs. 3, 6 and 7, showing the correct BLC­3/GAPDH and cyclin D1 data in Fig. 3A and 6B respectively, and the correct cyclin D1 data in Fig. 7A, are shown on the next two pages. Note that these errors did not adversely affect the major conclusions reported in the study. The authors all agree to the publication of this corrigendum, and thank the Editor of Oncology Reports for allowing them the opportunity to publish this. The authors also apologize for any inconvenience caused. [Oncology Reports 35: 2382­2390, 2016; DOI: 10.3892/or.2016.4616].

15.
Br J Cancer ; 127(2): 202-210, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35332266

RESUMEN

BACKGROUND: Lysine acetyltransferase 6 A (KAT6A) is a MYST-type histone acetyltransferase (HAT) enzyme, which contributes to histone modification and cancer development. However, its biological functions and molecular mechanisms, which respect to hepatocellular carcinoma (HCC), are still largely unknown. METHODS: Immunohistochemical, western blot and qRT-PCR analysis of KAT6A were performed. A series of in vitro and in vivo experiments were conducted to reveal the role of KAT6A in the progression of HCC. RESULTS: We demonstrated that KAT6A expression was upregulated in HCC tissues and cell lines. Clinical analysis showed that increased KAT6A was significantly associated with malignant prognostic features and shorter survival. Gain- and loss-of-function experiments indicated that KAT6A promoted cell viability, proliferation and colony formation of HCC cells in vitro and in vivo. We confirmed that KAT6A acetylates lysine 23 of histone H3 (H3K23), and then enhances the association of the nuclear receptor binding protein TRIM24 and H3K23ac. Consequently, TRIM24 functions as a transcriptional activator to activate SOX2 transcription and expression, leading to HCC tumorigenesis. Restoration of SOX2 at least partially abolished the biological effects of KAT6A on HCC cells. Overexpression of KAT6A acetyltransferase activity-deficient mutants or TRIM24 mutants lacking H3K23ac binding sites did not affect SOX2 expression and HCC biological function. Moreover, matrix stiffness can upregulate the expression of KAT6A in HCC cells. CONCLUSIONS: Our data support the first evidence that KAT6A plays an oncogenic role in HCC through H3K23ac/TRIM24-SOX2 pathway, and represents a promising therapeutic strategy for HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Histona Acetiltransferasas , Neoplasias Hepáticas , Factores de Transcripción SOXB1 , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Humanos , Neoplasias Hepáticas/patología , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Regulación hacia Arriba
17.
Cell Death Dis ; 12(12): 1134, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34873170

RESUMEN

The hepatic stellate cells (HSCs) activation by myofibroblastic differentiation is critical for liver fibrosis. Crosstalk between stromal cells and tumor cells in the microenvironment alters the properties and facilitates the growth and metastasis of tumor cells. How mechanical stimuli originally stiffness of extracellular matrix (ECM) contribute to tumor development remains poorly understood. Here, we demonstrated that stiffness contributes to mechanosignal transduction in HSCs, which promotes hepatocellular carcinoma (HCC) cells growth and metastasis through secretion of FGF2. On stiffness matrix, HSCs activation was confirmed by immunofluorescence (IF) and Western blot (WB) for α-smooth muscle actin (SMA). Increasing matrix stiffness promoted HSCs activation by CD36-AKT-E2F3 mechanosignaling through shRNA-mediated E2F3 knockdown, AKT inhibitors, and CD36 shRNA. Moreover, ChIP-qPCR. Confirmed that E2F3 combined the promoter of FGF2, and stiffness promoted FGF2 expression. On a stiff matrix, HCC cells cultured with conditioned media (CM) from HSCs increased HCC cells growth and metastasis by binding FGFR1 to activate PI3K/AKT and MEK/ERK signaling pathways. Moreover, conditional E2F3 knockout mice were subjected to CCl4 treatment to assess the role of E2F3 in HSC activation. Additionally, the DEN-induced HCC model was also used to evaluate the role of E2F3 in liver fibrosis and HCC growth. In conclusion, we demonstrated that stiffness-induced HSC activation by E2F3 dependent. Stiffness activated CD36-AKT-E2F3 signaling and targeted FGF2 transcription, subsequently, activated HCC growth and metastasis by FGFR1-mediated PI3K/AKT and MEK/ERK signaling.


Asunto(s)
Carcinoma Hepatocelular , Factor de Transcripción E2F3/metabolismo , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/patología , Proliferación Celular/genética , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas/patología , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Miofibroblastos/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/metabolismo , Microambiente Tumoral
18.
Oncol Rep ; 44(5): 2067-2079, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33000235

RESUMEN

Accumulating evidence has demonstrated that aberrant microRNA (miRNA) expression is involved in hepatocellular carcinoma (HCC) progression. Previous findings suggested that miRNA (miR)­875­5p participates in the development of various types of cancer. However, the expression and function of miR­875­5p in HCC remains largely unclear. The analysis of clinical samples in the present study demonstrated that miR­875­5p expression was downregulated in HCC tissues compared to adjacent non­tumor tissues, which was associated with a large tumor size, venous infiltration, advanced tumor­node­metastasis stage and unfavorable overall survival. In vitro experiments revealed that ectopic expression of miR­875­5p suppressed, whereas inhibition of miR­875­5p promoted HCC cell proliferation, migration, invasion and epithelial­to­mesenchymal transition (EMT) progression. Overexpression of miR­875­5p restrained HCC tumor growth and metastasis in vivo. Mechanistically, eukaryotic translation initiation factor 3 subunit a (eIF3a) was identified as the downstream target of miR­875­5p in HCC. Further experiments demonstrated that the expression of eIF3a was upregulated and negatively correlated with that of miR­875­5p in HCC tissues. In addition, miR­875­5p negatively regulated the luciferase activity of wild­type, but not mutant 3'­untranslated region (3'UTR) of eIF3a mRNA. miR­875­5p suppressed eIF3a expression at the mRNA and protein level in HCC cells. Additionally, eIF3a exerted an oncogenic role, and knockdown of eIF3a inhibited the proliferation, motility and EMT of HCC cells. In addition, eIF3a overexpression abolished the inhibitory effects of miR­875­5p on the proliferation, motility and EMT in HCC cells. In conclusion, miR­875­5p, which was downregulated in HCC, may inhibit tumor growth and metastasis by eIF3a downregulation via targeting its 3'UTR and may be a promising prognostic and therapeutic strategy in HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Factor 3 de Iniciación Eucariótica/genética , Neoplasias Hepáticas/genética , MicroARNs/metabolismo , Regiones no Traducidas 3'/genética , Animales , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/cirugía , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hepatectomía , Humanos , Estimación de Kaplan-Meier , Hígado/patología , Hígado/cirugía , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/cirugía , Masculino , Ratones , MicroARNs/agonistas , MicroARNs/antagonistas & inhibidores , Persona de Mediana Edad , Mutación , Estadificación de Neoplasias , Ensayos Antitumor por Modelo de Xenoinjerto
19.
J Cancer ; 11(19): 5831-5839, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32913476

RESUMEN

Zinc finger protein 521 (ZNF521) plays an important role in the tumor development and process. However, its regulatory role in hepatocellular carcinoma (HCC) remains unclear. In this study, we demonstrated for the first time that ZNF521 mRNA and protein was down-regulated in HCC tissues and cell lines. Down-regulated ZNF521 expression was significantly associated with malignant prognostic features, including advanced TNM stage and large tumor size. For 5-year survival, ZNF521 served as a potential prognostic marker of HCC patients. Moreover, ZNF521 inhibited cell proliferation, colony formation and cell viability through Runx2 transcriptional inhibition and AKT phosphorylation pathway. Moreover, we demonstrated that ZNF521 expression was regulated by miR-802. In HCC tissues. MiR-802 has an inverse correlation with ZNF521 expression. In conclusion, we demonstrate for the first time that ZNF521 is down-regulated in HCC tissues and inhibits HCC growth through Runx2 transcriptional inhibition and AKT inactivation, which was regulated by miR-802, suggesting the potential therapeutic value for HCC.

20.
Cancer Sci ; 111(11): 4118-4128, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32860321

RESUMEN

Accumulating evidence has identified long noncoding RNAs (lncRNAs) as regulators in tumor progression and development. Here, we elucidated the function and possible molecular mechanisms of the effect of lncRNA-PICSAR (p38 inhibited cutaneous squamous cell carcinoma associated lincRNA) on the biological behaviors of HCC. In the present study, we found that PICSAR was upregulated in HCC tissues and cells and correlated with progression and poor prognosis in HCC patients. Gain- and loss-of-function experiments indicated that PICSAR enhanced cell proliferation, colony formation, and cell cycle progression and inhibited apoptosis of HCC cells. PICSAR could function as a competing endogenous RNA by sponging microRNA (miR)-588 in HCC cells. Mechanically, miR-588 inhibited HCC progression and alternation of miR-588 reversed the promotive effects of PICSAR on HCC cells. In addition, we confirmed that eukaryotic initiation factor 6 (EIF6) was a direct target of miR-588 in HCC and mediated the biological effects of miR-588 and PICSAR in HCC, resulting in PI3K/AKT/mTOR pathway activation. Our data identified PICSAR as a novel oncogenic lncRNA associated with malignant clinical outcomes in HCC patients. PICSAR played an oncogenic role by targeting miR-588 and subsequently promoted EIF6 expression and PI3K/AKT/mTOR activation in HCC. Our results revealed that PICSAR could be a potential prognostic biomarker and therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transducción de Señal , Animales , Apoptosis/genética , Biomarcadores de Tumor , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Ratones , MicroARNs/genética , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/genética , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA