Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3706-3713, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39099345

RESUMEN

Acupoint drug delivery is a traditional external therapy of traditional Chinese medicine(TCM). Guided by the meridian and collateral theory in TCM, it applies medications to the skin at acupoints, exerting a dual therapeutic effect by stimulating the acupoints and the conduction of meridians. Acupoint drug delivery is widely used in clinical practice. Different from traditional oral admi-nistration and injection, it absorbs medications through the skin, effectively avoiding the first-pass effect of drugs and the toxic side effects caused by injection. Acupoint selection and transdermal drug absorption are pivotal factors affecting the efficacy of acupoint drug delivery. Recent research on acupoint drug delivery mainly focuses on the evaluation of clinical efficacy, yet the systematic investigations on acupoint selection and pharmacodynamic factors are scarce. This study reviews the mechanism, efficacy evaluation and application status of acupoint drug delivery. It integrates the theory of TCM with modern medicine to explore the mechanism of acupoint drug delivery, evaluate its clinical efficacy, and assess the transdermal penetration in vivo and in vitro. The application status of acupoint drug delivery is also summarized, including the selection of acupoints, application dosage form, application time and the absorption of acupoints. This review aims to offer insights and references for the research, development and clinical application of acupoint drug delivery products.


Asunto(s)
Puntos de Acupuntura , Sistemas de Liberación de Medicamentos , Humanos , Sistemas de Liberación de Medicamentos/métodos , Animales , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacocinética , Absorción Cutánea/efectos de los fármacos , Meridianos , Medicina Tradicional China , Administración Cutánea
2.
Mater Today Bio ; 27: 101153, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39081462

RESUMEN

The advantage of low-temperature forming through direct ink writing (DIW) 3D printing is becoming a strategy for the construction of innovative drug delivery systems (DDSs). Optimization of the complex formulation, including factors such as the printing ink, presence of solvents, and potential low mechanical strength, are challenges during process development. This study presents an application of DIW to fabricate water-soluble, high-dose, and sustained-release DDSs. Utilizing poorly compressible metformin hydrochloride as a model drug, a core-shell delivery system was developed, featuring a core composed of 96 % drug powder and 4 % binder, with a shell structure serving as a drug-release barrier. This design aligns with the sustained-release profile of traditional processes, achieving a 25.8 % reduction in volume and enhanced mechanical strength. The strategy facilitates sustained release of high-dose water-soluble formulations for over 12 h, potentially improving patient compliance by reducing formulation size. Process optimization and multi-batch flexibility were also explored in this study. Our findings provide a valuable reference for the development of innovative DDSs and 3D-printed drugs.

3.
Nano Lett ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776264

RESUMEN

High-entropy-alloy nanoparticles (HEA NPs) exhibit promising potential in various catalytic applications, yet a robust synthesis strategy has been elusive. Here, we introduce a straightforward and universal method, involving the microexplosion of Leidenfrost droplets housing carbon black and metal salt precursors, to fabricate PtRhPdIrRu HEA NPs with a size of ∼2.3 nm. The accumulated pressure within the Leidenfrost droplet triggers an intense explosion within milliseconds, propelling the carbon support and metal salt rapidly into the hot solvent through explosive force. The exceptionally quick temperature rise ensures the coreduction of metal salts, and the dilute local concentration of metal ions limits the final size of the HEA NPs. Additionally, the explosion process can be fine-tuned by selecting different solvents, enabling the harvesting of diverse HEA NPs with superior electrocatalytic activity for alcohol electrooxidation and hydrogen electrocatalysis compared to commercial Pt (Pd) unitary catalysts.

4.
J Colloid Interface Sci ; 666: 416-423, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38603883

RESUMEN

The construction of heterostructure materials has been demonstrated as the promising approach to design high-performance anode materials for sodium ion batteries (SIBs). Herein, micro-mesoporous cobalt phosphosulfide nanowires (Co3S4/CoP/NC) with Co3S4/CoP hetero-nanocrystals encapsulating into N-doped carbon frameworks were successfully synthesized via hydrothermal reaction and subsequent phosphosulfidation process. The obtained micro-mesoporous nanowires greatly improve the charge transport kinetics from the facilitation of the charge transport into the inner part of nanowire. When evaluated as SIBs anode material, the Co3S4/CoP/NC presents outstanding electrochemical performance and battery properties owing to the synergistic effect between Co3S4 and CoP nanocrystals and the conductive carbon frameworks. The electrode material delivers outstanding reversible rate capacity (722.33 mAh/g at 0.1 A/g) and excellent cycle stability with 522.22 mAh/g after 570 cycles at 5.0 A/g. Besides, the Ex-situ characterizations including XRD, XPS, and EIS further revealed and demonstrated the outstanding sodium ion storage mechanism of Co3S4/CoP/NC electrode. These findings pave a promising way for the development of novel metal phosphosulfide anodes with unexpected performance for SIBs and other alkali ion batteries.

5.
Molecules ; 29(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542904

RESUMEN

Ginseng holds high medicinal and cosmetic value, with stem and leaf extracts garnering attention for their abundant bioactive ingredients. Meanwhile, fermentation can enhance the effectiveness of cosmetics. The aim of this study was to optimize ginseng fermentation to produce functional cosmetics. Ginseng stem and leaf extracts were fermented with five different strains of lactic acid bacteria. Using 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radical (·OH), and superoxide anion (O2·-) scavenging activities as indicators, the fermentation process was optimized via response surface methodology. Finally, validation of the antioxidant activity of the optimized fermentation broth was performed using human skin cells (HaCaT and BJ cells). Based on the antioxidant potency composite comprehensive index, Lactiplantibacillus plantarum 1.140 was selected, and the optimized parameters were a fermentation time of 35.50 h, an inoculum size of 2.45%, and a temperature of 28.20 °C. Optimized fermentation boosted antioxidant activity: DPPH scavenging activity increased by 25.00%, ·OH by 94.00%, and O2·- by 73.00%. Only the rare ginsenoside Rg5 showed a substantial rise in content among the 11 ginsenosides examined after fermentation. Furthermore, the flavonoid content and ·OH scavenging activity were significantly negatively correlated (r = -1.00, p < 0.05), while the Rh1 content and O2·- scavenging activity were significantly positively correlated (r = 0.998, p < 0.05). Both the 0.06% (v/v) and 0.25% (v/v) concentrations of the optimized broth significantly promoted cell proliferation, and notable protective effects against oxidative damage were observed in HaCaT cells when the broth was at 0.06%. Collectively, we demonstrated that ginseng fermentation extract effectively eliminates free radicals, preventing and repairing cellular oxidative damage. This study has identified new options for the use of fermented ginseng in functional cosmetics.


Asunto(s)
Antioxidantes , Panax , Humanos , Antioxidantes/química , Lactobacillus/metabolismo , Fermentación , Extractos Vegetales/farmacología , Panax/química
6.
J Colloid Interface Sci ; 660: 97-105, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38241875

RESUMEN

Synthesis of advanced structure and multiple heteroatom-doped carbon based heterostructure materials are the key to the preparation of high-performance energy storage electrode materials. Herein, the hexapod-shaped Co1-xS@NPSC has been triumphantly prepared using hexapod ZIF-67 as the sacrificial template to prepare Co1-xS inner core and N, P, and S tri-doped carbon (NPSC) as the shell through the carbonization of the organic polymer precursor. When applied as anode for Na+ batteries (SIBs) and K+ batteries (PIBs), Co1-xS@NPSC presents the high reversible specific capability of 747.4 mAh/g at 1.0 A/g after 235 cycles and 387.8 mAh/g at 5.0 A/g after 760 cycles for SIBs, as well as 326.7 mAh/g at 1.0 A/g after 180 cycles for PIBs. The excellent storage capacity and rate capability of Co1-xS@NPSC is ascribed to hexapod structure of ZIF-67 unlike the common dodecahedron, which is constructed with interior porous and exterior framework repository, donating supplemental active sites, and doping of multiple heteroatoms forming organic polymer coating inhibiting the volume expansion and restrains the agglomeration of Co1-xS nanoparticles. This approach has paved a bright avenue to exploit promising anode materials with novel structure and hetero-atom doping for high-performance energy storage devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA