Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 157: 111296, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35761601

RESUMEN

Banana fruit is prone to chilling injury (CI) during cold storage, resulting in quality deterioration and commodity reduction. The hot water treatment (HWT), dipping banana fruit in hot water (52 °C) for 3 min, reduced CI symptom at 7 °C storage. The purpose of this study was to investigate the potential molecular mechanism of HWT on the alleviation of CI of postharvest banana fruit. It was found that HWT treatment obviously inhibited the increases in CI index, relative electrolytic leakage, and the contents of malonaldehyde (MDA) and O2•-, while enhanced proline accumulation. Further transcriptome analysis in the pericarp of banana fruit was evaluated during storage. The results showed that differentially expressed genes (DEGs) in the comparison between control and HWT group were mainly enriched in photosynthesis, chlorophyll metabolism, lipid metabolism, glutathione metabolism, and brassinosteroid and carotenoid biosynthesis. Moreover, transcriptome expression profiles and RT-qPCR analyses exhibited that the corresponding genes involved in these metabolism pathways and heat shock proteins (HSPs) were upregulated by HWT during cold storage. In general, our findings clearly reveal the potential pathways by which HWT alleviates CI in banana fruit, enriching the theoretical basis for the application of hot water to reduce CI in fruits.


Asunto(s)
Musa , Purificación del Agua , Frutas/metabolismo , Musa/genética , Musa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
2.
Asian-Australas J Anim Sci ; 33(3): 390-397, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31480195

RESUMEN

OBJECTIVE: The objective of this study was to measure the special expression pattern of lipid metabolism genes and investigate the molecular mechanisms underlying intramuscular fat (IMF) deposition in Longissimus dorsi muscle of Laiwu pigs. METHODS: Thirty-six pigs (Laiwu n = 18; Duroc×Landrace×Yorkshire n = 18) were used for the measurement of the backfat thickness, marbling score, IMF content, and expression of lipid metabolism genes. RESULTS: Significant correlations were found between IMF content and the mRNA expression of lipid metabolism genes. Of the 14 fat deposition genes measured, fatty acid synthase (FASN) showed the strongest correlation (r = 0.75, p = 0.001) with IMF content, and of the 6 fat removal genes, carnitine palmitoyl transferase 1B (CPT1B) exhibited the greatest negative correlation (r = -0.66, p = 0.003) with IMF content in Laiwu pig. Multiple regression analysis showed that CPT1B, FASN, solute carrier family 27 member 1 (SLC27A1), and fatty acid binding protein 3 (FABP3) contributed 38% of the prediction value for IMF content in Laiwu pigs. Of these four variables, CPT1B had the greatest contribution to IMF content (14%) followed by FASN (11%), SLC27A1 (9%), and FABP3 (4%). CONCLUSION: Our results indicate that the combined effects of an upregulation in fat deposition genes and downregulation in fat removal genes promotes IMF deposition in Laiwu pigs.

3.
Int J Mol Sci ; 20(16)2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398806

RESUMEN

Several lines of evidence have implicated the involvement of the phytohormone gibberellin (GA) in modulating leaf senescence in plants. However, upstream transcription factors (TFs) that regulate GA biosynthesis in association with GA-mediated leaf senescence remain elusive. In the current study, we report the possible involvement of a TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) TF BrTCP21 in GA-delayed leaf senescence in Chinese flowering cabbage. Exogenous GA3 treatment maintained a higher value of maximum PSII quantum yield (Fv/Fm) and total chlorophyll content, accompanied by the repression of the expression of senescence-associated genes and chlorophyll catabolic genes, which led to the delay of leaf senescence. A class I member of TCP TFs BrTCP21, was further isolated and characterized. The transcript level of BrTCP21 was low in senescing leaves, and decreased following leaf senescence, while GA3 could keep a higher expression level of BrTCP21. BrTCP21 was further found to be a nuclear protein and exhibit trans-activation ability through transient-expression analysis in tobacco leaves. Intriguingly, the electrophoretic mobility shift assay (EMSA) and transient expression assay illustrated that BrTCP21 bound to the promoter region of a GA biosynthetic gene BrGA20ox3, and activated its transcription. Collectively, these observations reveal that BrTCP21 is associated with GA-delayed leaf senescence, at least partly through the activation of the GA biosynthetic pathway. These findings expand our knowledge on the transcriptional mechanism of GA-mediated leaf senescence.


Asunto(s)
Brassica/fisiología , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Envejecimiento , Secuencia de Bases , Brassica/clasificación , Conservación de Alimentos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Giberelinas/farmacología , Fenotipo , Filogenia , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción/metabolismo
4.
Int J Mol Sci ; 20(16)2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31416297

RESUMEN

The plant hormone jasmonic acid (JA) has been recognized as an important promoter of leaf senescence in plants. However, upstream transcription factors (TFs) that control JA biosynthesis during JA-promoted leaf senescence remain unknown. In this study, we report the possible involvement of a TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) TF BrTCP7 in methyl jasmonate (MeJA)-promoted leaf senescence in Chinese flowering cabbage. Exogenous MeJA treatment reduced maximum quantum yield (Fv/Fm) and total chlorophyll content, accompanied by the increased expression of senescence marker and chlorophyll catabolic genes, and accelerated leaf senescence. To further understand the transcriptional regulation of MeJA-promoted leaf senescence, a class I member of TCP TFs BrTCP7 was examined. BrTCP7 is a nuclear protein and possesses trans-activation ability through subcellular localization and transcriptional activity assays. A higher level of BrTCP7 transcript was detected in senescing leaves, and its expression was up-regulated by MeJA. The electrophoretic mobility shift assay and transient expression assay showed that BrTCP7 binds to the promoter regions of a JA biosynthetic gene BrOPR3 encoding OPDA reductase3 (OPR3) and a chlorophyll catabolic gene BrRCCR encoding red chlorophyll catabolite reductase (RCCR), activating their transcriptions. Taken together, these findings reveal that BrTCP7 is associated with MeJA-promoted leaf senescence at least partly by activating JA biosynthesis and chlorophyll catabolism, thus expanding our knowledge of the transcriptional mechanism of JA-mediated leaf senescence.


Asunto(s)
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Brassica/clasificación , Brassica/genética , Brassica/metabolismo , Senescencia Celular , Regulación de la Expresión Génica de las Plantas , Fenotipo , Filogenia , Regiones Promotoras Genéticas , Unión Proteica
5.
Int J Mol Sci ; 20(8)2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30999552

RESUMEN

Sugar level is an important determinant of fruit taste and consumer preferences. However, upstream regulators that control sugar accumulation during fruit maturation are poorly understood. In the present work, we found that glucose is the main sugar in mature pitaya (Hylocereus) fruit, followed by fructose and sucrose. Expression levels of two sucrose-hydrolyzing enzyme genes HpINV2 and HpSuSy1 obviously increased during fruit maturation, which were correlated well with the elevated accumulation of glucose and fructose. A WRKY transcription factor HpWRKY3 was further identified as the putative binding protein of the HpINV2 and HpSuSy1 promoters by yeast one-hybrid and gel mobility shift assays. HpWRKY3 was localized exclusively in the nucleus and possessed trans-activation ability. HpWRKY3 exhibited the similar expression pattern with HpINV2 and HpSuSy1. Finally, transient expression assays in tobacco leaves showed that HpWRKY3 activated the expressions of HpINV2 and HpSuSy1. Taken together, we propose that HpWRKY3 is associated with pitaya fruit sugar accumulation by activating the transcriptions of sucrose metabolic genes. Our findings thus shed light on the transcriptional mechanism that regulates the sugar accumulation during pitaya fruit quality formation.


Asunto(s)
Cactaceae/metabolismo , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Sacarosa/metabolismo , Factores de Transcripción/metabolismo , Cactaceae/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hidrólisis , Proteínas de Plantas/genética , Factores de Transcripción/genética , Activación Transcripcional
6.
J Agric Food Chem ; 66(36): 9399-9408, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30133277

RESUMEN

Both NAC transcription factors (TFs) and reactive oxygen species (ROS) are known to be involved in leaf senescence. However, how NAC TFs modulate ROS metabolism associated with leaf senescence remains largely uncharacterized, especially during leaf senescence of postharvest economically leafy vegetables such as Chinese flowering cabbage. Here, we found that expression levels of two genes BrRbohB and BrRbohC-like encoding ROS-producing enzymes respiratory burst oxidase homologues (RBOHs) were increased consistently with the progression of postharvest leaf senescence, exhibiting a good correlation with ROS accumulation and chlorophyll degradation, as well as expressions of two chlorophyll catabolic genes ( CCGs), BrNYC1 and BrNYE1. Significantly, a novel, nuclear-localized transcriptional activator BrNAC055 was identified, and observed to show a similar expression pattern with BrRbohB, BrRbohC-like, BrNYC1 and BrNYE1. Further gel mobility shift and dual luciferase reporter assays confirmed that BrNAC055 bound directly to the NAC binding sequence (NACBS) in BrRbohB, BrRbohC-like, BrNYC1, and BrNYE1 promoters, and activated their activities. Moreover, transient overexpression of BrNAC055 in tobacco leaves made an increased ROS level and accelerated chlorophyll degradation via the up-regulation of NbRbohA and NbSGR1, resulting in the promoted leaf senescence. On the basis of these findings, we conclude that BrNAC055 acts as a transcriptional activator of ROS production and chlorophyll degradation by activating the transcriptions of RBOHs and CCGs and thereby accelerates leaf senescence in Chinese flowering cabbage.


Asunto(s)
Brassica/metabolismo , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas , NADPH Oxidasas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Brassica/genética , Brassica/crecimiento & desarrollo , NADPH Oxidasas/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA