Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38779766

RESUMEN

Epidermal stem cells (EpSCs) play a vital role in skin wound healing through re-epithelialization. Identifying chemicals that can promote EpSC proliferation is helpful for treating skin wounds. This study investigates the effect of morroniside on cutaneous wound healing in mice and explores the underlying mechanisms. Application of 10‒50 µg/mL of morroniside to the skin wound promotes wound healing in mice. In vitro studies demonstrate that morroniside stimulates the proliferation of mouse and human EpSCs in a time- and dose-dependent manner. Mechanistic studies reveal that morroniside promotes the proliferation of EpSCs by facilitating the cell cycle transition from the G1 to S phase. Morroniside increases the expression of ß-catenin via the glucagon-like peptide-1 receptor (GLP-1R)-mediated PKA, PKA/PI3K/AKT and PKA/ERK signaling pathways, resulting in an increase in cyclin D1 and cyclin E1 expression, either directly or by upregulating c-Myc expression. This process ultimately leads to EpSC proliferation. Administration of morroniside to mouse skin wounds increases the phosphorylation of AKT and ERK, the expressions of ß-catenin, c-Myc, cyclin D1, and cyclin E1, as well as the proliferation of EpSCs, in periwound skin tissue, and accelerates wound re-epithelialization. These effects of morroniside are mediated by the GLP-1R. Overall, these results indicate that morroniside promotes skin wound healing by stimulating the proliferation of EpSCs via increasing ß-catenin expression and subsequently upregulating c-Myc, cyclin D1, and cyclin E1 expressions through GLP-1R signaling pathways. Morroniside has clinical potential for treating skin wounds.

2.
ACS Omega ; 9(14): 16810-16819, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38617601

RESUMEN

Calcification roasting-acid leaching is a clean, efficient, and environmentally friendly process, but in the roasting process, the local temperature is often too high, the heat release is not timely, and the heat transfer is blocked. Furthermore, the material is easy to sinter, which affects the final vanadium extraction effect. In this paper, a small amount of CeO2 was introduced in the roasting process of vanadium slag to promote the calcified roasting. The results showed that the vanadium leaching rate reached 93.17% with the addition of 0.1 wt % CeO2 at a roasting temperature of 750 °C, which was higher than that obtained without CeO2 addition (90.00%). The results of XPS, XRD, and SEM-EDS analyses confirmed that adding CeO2 to the roasted clinker significantly increased the proportion of pentavalent vanadium to the total vanadium by up to 28.64%. O2-TPD analysis revealed an enhanced chemisorbed oxygen with the CeO2-assisted roasting, indicated the activation of oxygen by CeO2, and resulted in an enhanced oxidation of vanadium. The work in this paper establishes an alternative route for catalytic oxidation-enhanced vanadium slag roasting, which can improve the utilization of vanadium slag at relatively lower temperatures under the action of CeO2 and is of positive significance in solving the problems of sintering and energy consumption in the roasting process.

3.
Environ Res ; 250: 118499, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38368921

RESUMEN

The practical, sensitive, and real-time detection of heavy metal ions is an essential and difficult problem. This study presents the design of a unique magnetic electrochemical detection system that can achieve real-time field detection. To enhance the electrochemical performance of the sensor, Fe2O3@C-800, Co/CoO@/C-600, and CoFe2O4@C-600 magnetic composites were synthesized using three MOFs precursors by the solvothermal method. And the morphology structure and electrochemical properties of as-prepared magnetic composites were researched by X-ray diffraction (XRD), Scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), specific surface area and porosity analyzer (BET) and differential pulse voltammetry (DPV). The results shown that these composites improve conductivity and stability while preserving the MOFs basic frame structure. Compared with the monometallic MOFs-derived composites, the synergistic effect of the bimetallic composite CoFe2O4@C-600 can significantly enhance the electrochemical performance of the sensor. The linear range for the detection of lead ions was 0.001-60 µM, and the detection limit was 0.0043 µM with a sensitivity of 22.22 µA µM·cm-2 by differential pulse voltammetry. The sensor has good selectivity, stability, reproducibility and can be used for actual sample testing.


Asunto(s)
Cobalto , Técnicas Electroquímicas , Plomo , Plomo/análisis , Plomo/química , Cobalto/química , Cobalto/análisis , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Límite de Detección , Hierro/química , Hierro/análisis , Estructuras Metalorgánicas/química
4.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38256090

RESUMEN

The immunity-related functions of defensins seem to be dependent on environmental stimuli, the cell type, and the concentration of peptides. However, the function and mechanism of porcine ß-defensin 114 (pBD114) in regulating the inflammatory response to macrophages are unclear. Therefore, the modulatory effects of porcine pBD114 on the inflammatory response were investigated by treating the mouse monocyte macrophage cell line RAW264.7 with different concentrations of pBD114 with or without lipopolysaccharide (LPS). RNA-seq analysis was performed to investigate the mechanisms underlying pBD114's regulation of inflammatory responses in macrophages. In addition, the inflammatory response-modulating effects of pBD114 were also further verified with a mouse assay. The results showed that 100 µg/mL of pBD114 significantly promoted the secretion of TNF-α and IL-10 in RAW264.7. However, the LPS-induced increase in TNFα in the RAW264.7 cell cultures was significantly decreased with 10 µg/mL of pBD114. These results suggest that pBD114 can exhibit pro-inflammatory activities under normal physiological conditions with 100 µg/mL of pBD114, and anti-inflammatory activities during an excessive inflammatory response with 10 µg/mL of pBD114. RNA-seq analysis was performed to gain further insights into the effects of pBD114 on the inflammatory response. Among the pBD114-promoting RAW264.7 pro-inflammatory responses, pBD114 significantly up-regulated 1170 genes and down-regulated 724 genes. KEGG enrichment showed that the differentially expressed genes (DEGs) were significantly enriched in the immune- and signal-transduction-related signaling pathways. Protein-Protein Interaction (PPI) and key driver analysis (KDA) analyses revealed that Bcl10 and Bcl3 were the key genes. In addition, pBD114 significantly up-regulated 12 genes and down-regulated 38 genes in the anti-inflammatory response. KEGG enrichment analysis revealed that the DEGs were mainly enriched in the "Cytokine-cytokine receptor interaction" signaling pathway, and PPI and KDA analyses showed that Stat1 and Csf2 were the key genes. The results of qRT-PCR verified those of RNA-seq. In vivo mouse tests also confirmed the pro- or anti-inflammatory activities of pBD114. Although the inflammatory response is a rapid and complex physiological reaction to noxious stimuli, this study found that pBD114 plays an essential role mainly by acting on the genes related to immunity, signal transduction, signaling molecules, and interactions. In conclusion, this study provides a certain theoretical basis for the research and application of defensins.


Asunto(s)
beta-Defensinas , Porcinos , Animales , Ratones , beta-Defensinas/genética , Lipopolisacáridos/farmacología , Inflamación/genética , Transducción de Señal , Antiinflamatorios
5.
ACS Omega ; 8(41): 38469-38480, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867691

RESUMEN

Preventing lead-based anodes from causing high-energy consumption, lead pollution, and harmful anode slime emission is a major challenge for the current electrolytic manganese metal industry. In this work, a Ti4O7-coated titanium electrode was used as anode material (Ti/Ti4O7 anode) in manganese electrowinning process for the first time and compared with a lead-based anode (Pb anode). The Ti/Ti4O7 anode was used for galvanostatic electrolysis; the cathodic current efficiency improved by 3.22% and energy consumption decreased by 7.82%. During 8 h of electrolysis, it reduced 90.42% solution anode slime and 72.80% plate anode slime formation. Anode product characterization and electrochemical tests indicated that the Ti/Ti4O7 anode possesses good oxygen evolution activity, and γ-MnO2 has a positive catalytic effect on oxygen evolution reaction (OER), which inhibited anode Mn2+ oxidation reaction and reduced the formation of anode slime. In addition, the low charge-transfer resistance, high diffusion resistance, and dense MnO2 layer of the anode blocked the diffusion path of Mn3+ in the system and inhibited the formation of anode slime. The Ti/Ti4O7 anode exhibits excellent electrochemical performance, which provides a new idea for the selection of novel anodes, energy savings and emission reduction, and the establishment of a new mode of clean production in the electrolytic manganese metal industry.

6.
Anim Biotechnol ; 34(8): 3971-3977, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37906091

RESUMEN

This experiment was conducted to explore the effects of gut microbiota on neonatal diarrhea in a germ-free (GF) pig model. Twelve hysterectomy-derived GF piglets were housed in six sterile isolators. Among them, six piglets were treated as the GF group, and the other six piglets were orally introduced with healthy sow fecal suspension and regarded as the fecal microbiota transplantation (FMT) group. Another six piglets from natural birth were considered as the conventional (CV) group. The GF and FMT piglets were hand-fed with sterile milk powder for 21 days, and the CV piglets were suckled for the same days. Then, all piglets were fed with sterile feed for another 21 days. Results exhibited that the GF group's fecal score and moisture level were higher than those in the CV and FMT groups (p < 0.05). Meanwhile, the abundances of colonic AQP1 and AQP8 in the GF group were the greatest among these treatments (p < 0.05). However, FMT piglets had a lower fecal score in d 22-28 and d 29-35 than that in the CV piglets (p < 0.05). Collectively, the absence of gut microbiota may cause diarrhea in the piglet model, and transplantation of maternal fecal microbiota may reverse it.


Asunto(s)
Microbioma Gastrointestinal , Porcinos , Animales , Femenino , Diarrea/terapia , Diarrea/veterinaria , Trasplante de Microbiota Fecal , Heces
7.
Front Physiol ; 14: 1084332, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035673

RESUMEN

The gastrointestinal tract contains a complex microbial community. Peyer's patches (PPs) play an important role in inducing mucosal immune responses in the gastrointestinal tract. However, little is known about the effect of commensal microbiota on the host's PPs. Here, we analyzed the phenotypic-to-transcriptome changes in the intestine PPs of specific pathogen-free (SPF) and germ-free (GF) piglets (fed in an environment with and without commensal microbiota, respectively) to elucidate the role of commensal microbiota in host intestine mucosal immunity. Analyses of anatomical and histological characteristics showed that commensal microbiota deficiency led to PP hypoplasia, especially regarding B and T cells. A total of 12,444 mRNAs were expressed in 12 libraries; 2,156 and 425 differentially expressed (DE) mRNAs were detected in the jejunal PP (JPP) and ileal PP (IPP), respectively (SPF vs. GF). The shared DE mRNAs of the JPP and IPP were mainly involved in basic physiological and metabolic processes, while the specific DE mRNAs were enriched in regulating immune cells in the JPP and microbial responses and cellular immunity in the IPP. Commensal microbiota significantly modulated the expression of genes related to B-cell functions, including activation, proliferation, differentiation, apoptosis, receptor signaling, germinal center formation, and IgA isotype class switching, particularly in the JPP. TLR4 pathway-related genes were induced in response to microbial colonization and in LPS/SCFA-treated B cells. We also detected 69 and 21 DE lncRNAs in the JPP and IPP, respectively, and four one-to-one lncRNA-mRNA pairs were identified. These findings might represent key regulatory axes for host intestine mucosal immunity development during microbial colonization. Overall, the findings of this study revealed that commensal microbiota modulated phenotypic characteristics and gene expression in the piglet intestine PPs and underscored the importance of early microbial colonization for host mucosal immunity development.

8.
iScience ; 26(3): 106190, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36895644

RESUMEN

This study evaluated the repair effects of Clostridium butyricum (CBX 2021) on the antibiotic (ABX)-induced intestinal dysbiosis in mice by the multi-omics method. Results showed that ABX eliminated more than 90% of cecal bacteria and also exerted adverse effects on the intestinal structure and overall health in mice after 10 days of the treatment. Of interest, supplementing CBX 2021 in the mice for the next 10 days colonized more butyrate-producing bacteria and accelerated butyrate production compared with the mice by natural recovery. The reconstruction of intestinal microbiota efficiently promoted the improvement of the damaged gut morphology and physical barrier in the mice. In addition, CBX 2021 significantly reduced the content of disease-related metabolites and meanwhile promoted carbohydrate digestion and absorption in mice followed the microbiome alternation. In conclusion, CBX 2021 can repair the intestinal ecology of mice damaged by the antibiotics through reconstructing gut microbiota and optimizing metabolic functions.

9.
Ecotoxicol Environ Saf ; 253: 114712, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36863163

RESUMEN

Bacterial loading aggravates the harm of particulate matter (PM) to public health and ecological systems, especially in operations of concentrated animal production. This study aimed to explore the characteristics and influencing factors of bacterial components of inhalable particles at a piggery. The morphology and elemental composition of coarse particles (PM10, aerodynamic diameter ≤ 10 µm) and fine particles (PM2.5, aerodynamic diameter ≤ 2.5 µm) were analyzed. Full-length 16 S rRNA sequencing technology was used to identify bacterial components according to breeding stage, particle size, and diurnal rhythm. Machine learning (ML) algorithms were used to further explore the relationship between bacteria and the environment. The results showed that the morphology of particles in the piggery differed, and the morphologies of the suspected bacterial components were elliptical deposited particles. Full-length 16 S rRNA indicated that most of the airborne bacteria in the fattening and gestation houses were bacilli. The analysis of beta diversity and difference between samples showed that the relative abundance of some bacteria in PM2.5 was significantly higher than that in PM10 at the same pig house (P < 0.01). There were significant differences in the bacterial composition of inhalable particles between the fattening and gestation houses (P < 0.01). The aggregated boosted tree (ABT) model showed that PM2.5 had a great influence on airborne bacteria among air pollutants. Fast expectation-maximization microbial source tracking (FEAST) showed that feces was a major potential source of airborne bacteria in pig houses (contribution 52.64-80.58 %). These results will provide a scientific basis for exploring the potential risks of airborne bacteria in a piggery to human and animal health.


Asunto(s)
Contaminantes Atmosféricos , Fitomejoramiento , Humanos , Animales , Porcinos , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis , Genes de ARNr , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Tamaño de la Partícula , Bacterias/genética , Monitoreo del Ambiente
11.
Animals (Basel) ; 13(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36978598

RESUMEN

Fine particulate matter (PM2.5) can carry numerous substances and penetrate deep into the respiratory tract due to its small particle size; associated harmful microorganisms are suspected to increase health risks for humans and animals. To find out the microbial compositions of PM2.5 in piggeries, their interaction and traceability, we collected PM2.5 samples from a piggery while continuously monitoring the environmental indicators. We also identified pathogenic bacteria and allergens in the samples using high-throughput sequencing technology. We analyzed the microbial differences of PM2.5 samples at different heights and during different times of day and investigated the microbial dynamics among the PM2.5 samples. To better understand the interaction between microorganisms and environmental factors among different microbial communities, we applied the network analysis method to identify the correlation among various variables. Finally, SourceTracker, a commonly used microbial traceability tool, was used to predict the source of airborne microorganisms in the pig house. We identified 14 potential pathogenic bacteria and 5 allergens from PM2.5 in the pig houses, of which Acinetobacter was the dominant bacterium in all samples (relative abundance > 1%), which warrants attention. We found that bacteria and fungi directly affected the the microbial community. The bacterial community mainly played a positive role in the microbial community. Environmental variables mainly indirectly and positively affected microbial abundance. In the SourceTracker analysis using fecal matter and feed as sources and PM2.5 sample as sink, we found that fecal matter made the greatest contribution to both bacterial and fungal components of PM2.5. Our findings provide important insights into the potential risks of pathogens in PM2.5 to human and animal health and their main sources.

12.
J Anim Physiol Anim Nutr (Berl) ; 107(3): 839-849, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36239230

RESUMEN

As a potential prebiotic, soybean oligosaccharides (SBOS) can improve animal health by modulating gut microbiota. The aim of this study was to investigate the different effects of supplementing SBOS and supplementing SBOS plus probiotic on the growth and health of pigs. Three groups of growing pigs (n = 12) were fed with basal diet (Control), basal diet + 0.5% SBOS (SBOS), or basal diet +0.5% SBOS + 0.1% compound probiotics (SOP) for 42 days. Results showed that SBOS and SOP treatments had positive effects on the pigs in the experiment, and the latter was more effective. Compared with the control pigs, the average daily gain of SBOS group and SOP group slightly increased, SOP significantly increased the serum levels of growth hormone and thyroid hormone T3. Importantly, serum concentrations of immunoglobulin (IgA, IgG and IgM), total antioxidant capacity and superoxide dismutase in both treatments were increased significantly, SOP group most. Moreover, the faecal odour compounds of pigs, especially skatole, were significantly reduced by the treatments. Additionally, SOP significantly increased the diversity and richness of the faecal microbiota, both the treatments increased genera of norank_f_Muribaculaceae and Ruminococcaceae but reduced Lactobacillus. Correlation analysis indicated that Lactobacillus was significantly positively correlated with odour compounds, while Ruminococcaceae was the opposite. Conclusively, synbiotics combined with SBOS and probiotics had stronger promotion effects on the growth and health of pigs.


Asunto(s)
Microbioma Gastrointestinal , Lactobacillales , Probióticos , Porcinos , Animales , Glycine max , Odorantes , Probióticos/farmacología , Oligosacáridos/farmacología , Dieta/veterinaria , Lactobacillus , Alimentación Animal/análisis
13.
Obes Res Clin Pract ; 17(1): 74-81, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36494293

RESUMEN

AIMS: Naringin, a flavonoid present in citrus fruits, has been known for the capacity to reduce lipid synthesis and anti-inflammatory. In this study, we investigated whether naringin increases lipolysis and fatty acid ß-oxidation to change fat deposition. METHODS: In in vivo experiment, obese adult mice (20-weeks-old, n = 18) were divided into control group fed with normal diet and naringin-treated group fed with naringin-supplemented diet (5 g/kg) for 60 days, respectively. In in vitro experiment, differentiated 3T3-L1 adipocytes were treated for four days with or without naringin (100 µg/mL). RESULTS: Supplementing naringin significantly reduced the body weight, abdominal fat weight, blood total cholesterol content of mice, but did not affect food intake. In addition, naringin decreased levels of pro-inflammatory factors in adipose tissue including interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and monocyte chemotactic protein 1 (MCP-1). Naringin increased the expression of AMP-activated protein kinase (AMPK), a key factor in cellular energy metabolism, and raised the ratio of p-AMPK/AMPK in mouse liver tissue. The protein expression of hormone-sensitive lipase (HSL), phospho-HSL563 (p-HSL563), p-HSL563/HSL, and adipocyte triglyceride lipase (ATGL) was significantly increased in the adipose tissue of naringin-treated mice. Furthermore, naringin enhanced the expression of fatty acid ß-oxidation genes, including carnitine palmitoyl transferase 1 (CPT1), uncoupling protein 2 (UCP2), and acyl-coenzyme A oxidase 1 (AOX1) in mouse adipose tissue. In in vitro experiment, similar findings were observed in differentiated 3T3-L1 adipocytes with naringin treatment. The treatment remarkably reduced intracellular lipid content, increased the number of mitochondria and promoted the gene expression of HSL, ATGL, CPT1, AOX1, and UCP2 and the phosphorylation of HSL protein. CONCLUSION: Naringin reduced body fat in obese mice and lipid content in differentiated 3T3-L1 adipocytes, which was associated with enhanced AMPK activation and upregulation of the expression of the lipolytic genes HSL, ATGL, and ß-oxidation genes CPT1, AOX1, and UCP2.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Lipólisis , Ratones , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Esterol Esterasa/metabolismo , Lipasa , Ácidos Grasos , Lípidos , Células 3T3-L1
14.
Environ Technol ; 44(11): 1642-1652, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34807808

RESUMEN

The purpose of this paper is centred on the kinetics of removal of main pollutants in wastewater and to compared different hydraulic loading conditions of the constructed rapid infiltration system (CRI system) in terms of removal efficiencies, effluent concentrations, mass removal rate (MRR), and the first-order removal rate coefficient (k) of COD, TOC, NH4+-N, TN, and TP. The results showed that the higher the hydraulic loading, the higher the effluent concentration. The results that synthesized hydraulic loading, effluent concentrations, removal efficiencies, and other conditions showed that the best hydraulic loading was 40 cm/d. When the hydraulic load was 40 cm/d, the effluent average concentrations of COD, TOC, NH4+-N, TN, TP, Cu2+ and the removal efficiencies were 27.31 ± 16.40 mg/L, 86.11%, 10.55 ± 5.25 mg/L, 84.64%, 0.59 ± 0.87 mg/L, 99.60%, 143.31 ± 14.77 mg/L, 7.04%, 5.64 ± 1.38 mg/L, 79.20%, and 0.13 ± 0.47 mg/L, 97.51%, respectively. According to a kinetic study of the primary pollutants, the MRR increased with an increase in the hydraulic loading, except for ammonia nitrogen. CRI-3, CRI-4 were high significant correlated with ammonia nitrogen (with R2 = 93.65% and R2 = 95.03%, respectively), while CRI-2, CRI-3, and CRI-4 were high significant correlated with total nitrogen (with R2 = 94.56%, R2 = 96.70% and R2 = 96.56% respectively).


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Animales , Porcinos , Eliminación de Residuos Líquidos/métodos , Amoníaco , Cinética , Nitrógeno
15.
Environ Technol ; 44(24): 3741-3750, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35481454

RESUMEN

Electrolytic manganese anode slime (EMAS) is produced during the production of electrolytic manganese metal. In this study, a method based on vacuum carbothermal reduction was used for Pb removal in EMAS. A Pb-removal efficiency of 99.85% and MnO purity in EMAS of 97.34 wt.% were obtained for a reduction temperature of 950°C and a carbon mass ratio of 10% for a holding time of 100 min. The dense structure of the EMAS was destroyed, a large number of multidimensional pores and cracks were formed, and the Pb-containing compound was reduced to elemental Pb by the vacuum carbothermal reduction. A recovery efficiency for chemical MnO2 of 36.6% was obtained via preparation from Pb-removed EMAS through the 'roasting-pickling disproportionation' process, with an acid washing time of 100 min, acid washing temperature of 70°C, H2SO4 concentration of 0.8 mol·L-1, liquid-solid mass ratio of 7 mL·g-1, calcination temperature of 60°C and calcination time of 2.5 h. Moreover, the crystal form of the prepared chemical MnO2 was found to be basically the same as that of electrolytic MnO2, and its specific surface area, micropore volume and discharge capacity were all higher than that of electrolytic MnO2. This study provides a new method for Pb removal and recycling for EMAS.HighlightsVacuum carbothermal reduction method was used for Pb removal in EMAS.The removal efficiency of Pb was 99.85%.Chemical MnO2 with excellent discharge performance was prepared using treated EMAS.This study provides a new method for EMAS resource utilization.


Asunto(s)
Manganeso , Óxidos , Óxidos/química , Plomo , Compuestos de Manganeso/química , Electrodos
16.
Anim Biotechnol ; 34(7): 2972-2978, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36165762

RESUMEN

Our knowledge of the difference in maternal and neonatal gut microbiota composition is not fully understood. Using the Bama miniature pig model, the bacterial community in the feces from sows and piglets was analyzed on an IonS5TMXL platform targeting the single-end reads strategy. Results revealed that the maternal and neonatal bacteria profile in the pig model was distinct. Compared with the piglets, sows had higher proportions of bacteria in Spirochetes, Clostridiales, and Spirochaetales (p < 0.10) and had a lower abundance of bacteria in Tyzzerella (p < 0.05) and Alistipes (p < 0.10). Meanwhile, the proportions of bacteria in Oscillibacter and the index of Chao1, Shannon, and observed_species increased in the sows compared with those in the piglets (p < 0.05). Moreover, the abundance of bacteria associated with the human disease was higher (p < 0.05) and the population of bacteria associated with cellular processes was lower (p < 0.05) in the piglets compared with those in the sows. Collectively, the diversity and beneficial bacteria populations in the sow fecal microbiota exhibit more than those in the piglets. This study indicates that maternal fecal microbiota may be a beneficial source of transplanted bacteria to promote healthy function in neonates.


Asunto(s)
Microbioma Gastrointestinal , Lactobacillales , Microbiota , Humanos , Porcinos , Animales , Femenino , Heces , Bacterias
17.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36361920

RESUMEN

In this study, an (A-R)TiO2 catalyst (ART) was prepared via the sol-gel method, and g-C3N4 (CN) was used as an amendment to prepare the g-C3N4/(A-R)TiO2 composite catalyst (ARTCN). X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, N2 adsorption-desorption curves (BET), UV-Vis diffuse absorption spectroscopy (UV-Vis DRS), and fluorescence spectroscopy (PL) were used to evaluate the structure, morphology, specific surface area, optical properties, and photocarrier separation ability of the catalysts. The results showed that when the modifier CN content was 0.5 g, the dispersion of the ARTCN composite catalyst was better, with stronger light absorption performance, and the forbidden band width was smaller. Moreover, the photogenerated electrons in the conduction band of ART transferred to the valence band of CN and combined with the holes in the valence band of CN, forming Z-type heterostructures that significantly improved the efficiency of the photogenerated electron-hole migration and separation, thus increasing the reaction rate. Gaseous and liquid ammonia were used as the target pollutants to investigate the activity of the prepared catalysts, and the results showed that the air wetness and initial concentration of ammonia had a great influence on the degradation of gaseous ammonia. When the initial concentration of ammonia was 50 mg/m3 and the flow rate of the moist air was 0.9 mL/min, the degradation rate of gaseous ammonia by ARTCN-0.5 reached 88.86%, and it had good repeatability. When the catalytic dose was 50 mg and the initial concentration of NH4+ was 100 mg/L, the degradation rate of liquid ammonia by ARTCN-0.5 was 71.60% after 3 h of reaction, and small amounts of NO3- and NO2- were generated. The superoxide anion radical (·O2-) and hydroxyl radical (·OH) were the main active components in the photocatalytic reaction process.


Asunto(s)
Amoníaco , Gases , Luz , Catálisis
18.
Front Microbiol ; 13: 970470, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312924

RESUMEN

The roles of the microbe-gut-brain axis in metabolic homeostasis, development, and health are well-known. The hypothalamus integrates the higher nerve center system and functions to regulate energy balance, feeding, biological rhythms and mood. However, how the hypothalamus is affected by gut microbes in mammals is unclear. This study demonstrated differences in hypothalamic gene expression between the germ-free (GF) pigs and pigs colonized with gut microbiota (CG) by whole-transcriptome analysis. A total of 938 mRNAs, 385 lncRNAs and 42 miRNAs were identified to be differentially expressed between the two groups of pigs. An mRNA-miRNA-lncRNA competing endogenous RNA network was constructed, and miR-22-3p, miR-24-3p, miR-136-3p, miR-143-3p, and miR-545-3p located in the net hub. Gene function and pathway enrichment analysis showed the altered mRNAs were mainly related to developmental regulation, mitochondrial function, the nervous system, cell signaling and neurodegenerative diseases. Notably, the remarkable upregulation of multiple genes in oxidative phosphorylation enhanced the GF pigs' hypothalamic energy expenditure. Additionally, the reduction in ATP content and the increase in carnitine palmitoyl transterase-1 (CPT1) protein level also confirmed this fact. Furthermore, the hypothalamic cell apoptosis rate in the CG piglets was significantly higher than that in the GF piglets. This may be due to the elevated concentrations of pro-inflammatory factors produced by gut bacteria. The obtained results collectively suggest that the colonization of gut microbes has a significant impact on hypothalamic function and health.

19.
Bioengineering (Basel) ; 9(9)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36134996

RESUMEN

As the initial antibody technology, the preparation of hybridoma cells has been widely used in discovering antibody drugs and is still in use. Various antibody drugs obtained through this technology have been approved for treating human diseases. However, the key to producing hybridoma cells is efficient cell fusion. High-voltage microsecond pulsed electric fields (µsHVPEFs) are currently one of the most common methods used for cell electrofusion. Nevertheless, the membrane potential induced by the external microsecond pulse is proportional to the diameter of the cell, making it difficult to fuse cells of different sizes. Although nanosecond pulsed electric fields (nsPEFs) can achieve the fusion of cells of different sizes, due to the limitation of pore size, deoxyribonucleic acid (DNA) cannot efficiently pass through the cell pores produced by nsPEFs. This directly causes the significant loss of the target gene and reduces the proportion of positive cells after fusion. To achieve an electric field environment independent of cell size and enable efficient cell fusion, we propose a combination of nanosecond pulsed electric fields and low-voltage microsecond pulsed electric fields (ns/µsLVPEFs) to balance the advantages and disadvantages of the two techniques. The results of fluorescence experiments and hybridoma culture experiments showed that after lymphocytes and myeloma cells were stimulated by a pulse (ns/µsLVPEF, µsHVPEF, and control), compared with µsHVPEF, applying ns/µsLVPEF at the same energy could increase the cell fusion efficiency by 1.5-3.0 times. Thus far, we have combined nanosecond and microsecond pulses and provided a practical solution that can significantly increase cell fusion efficiency. This efficient cell fusion method may contribute to the further development of hybridoma technology in electrofusion.

20.
Materials (Basel) ; 15(18)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36143777

RESUMEN

{001}TiO2/TiOF2 photocatalytic composites with a high activity {001} crystal plane were prepared by one-step hydrothermal methods using butyl titanate as a titanium source and hydrofluoric acid as a fluorine source. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), raman spectroscopy, N2 adsorption-desorption curve (BET), UV-Vis diffuse absorption spectroscopy (UV-Vis DRS), X-ray photoelectron spectroscopy (XPS), and fluorescence spectroscopy (PL) were used to evaluate the structure, morphology, specific surface area, optical properties, and photocarrier separation ability of {001}TiO2/TiOF2. Ammonia nitrogen was taken as the target pollutant, and the degradation performance of the catalyst was investigated. The results show that hydrofluoric acid improves the content of {001} crystal plane of TiO2 with high activity; it also improves the specific surface area and dispersion of the composite material and adjusts the ratio of {001}TiO2 to TiOF2 in the composite material to enhance the absorption capacity of the composite material and reduce the band gap width of the composite material. The degradation rate of ammonia nitrogen by 100 mg F15 is 93.19% when the initial concentration of ammonia nitrogen is 100 mg/L and pH is 10. Throughout the reaction process, the {001}TiO2/TiOF2 composite produces superoxide anion radical (·O2-) and hydroxyl radical (·OH) to oxidize NH3·H2O and generate N2 accompanied by a small amount of NO3- and NO2-.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...