Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros











Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(10): 12534-12543, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38410050

RESUMEN

The low O2 activation ability at low temperatures and SO2 poisoning are challenges for metal oxide catalysts in the application of Hg0 removal in flue gas. A novel high-entropy fluorite oxide (MgAlMnCo)CeO2 (Co-HEO) with the second phase of spinel is synthesized by the microwave hydrothermal method for the first time. A high efficiency of Hg0 removal (close to 100%) is achieved by Co-HEO catalytic oxidation at temperatures as low as 100 °C and in the atmosphere of 145 µg m-3 Hg0 at a high GHSV (gas hourly space velocity) of 95,000 h-1. According to O2-TPD and in situ FT-IR, this extremely superior catalytic oxidation performance at low temperatures originates from the activation ability of Co-HEO to transform O2 into superoxide and peroxide, which is promoted by point defects induced from the spinel/fluorite heterointerfaces. Meanwhile, SO2 resistance of Co-HEO for Hg0 removal is also improved up to 2000 ppm due to the high-entropy-stabilized structure, construction of heterointerfaces, and synergistic effect of the multicomponents for inhibiting the oxidation of SO2 to surface sulfate. The design strategy of the dual-phase high-entropy material launches a new route for metal oxides in the application of catalytic oxidation and SO2 resistance.

2.
Chemistry ; 29(67): e202301954, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37665039

RESUMEN

Due to the complex composition and similar structure, the extraction denitrification of aromatic rich oil is faced with the contradiction problem of denitrification efficiency and aromatic loss which cannot be efficiently solved by experiments. However, the complex interactions involved can be analyzed from the perspective of calculation, and the prediction criteria and methods are proposed. Based on rigorous density functional theory calculation data, Simple models based on electrostatic potential (ESP) and Van der Waals potential (VdWP)-based calculations were established and validated. The twofold model provided the best prediction for interactions between extractants and nitrogen compounds and between extractants and aromatics, which determines denitrification efficiency and aromatic loss, respectively, due to the most complete description of both electrostatic and VdW force. This provides a powerful tool for evaluating the non-covalent interactions and thence tuning the efficiency of the separation process. Thus, high denitrification efficiency (43.2~66.3 %) and moderate aromatic loss (1.7~4.4 %) were obtained using screened deep eutectic solvents (DESs). This ideal observation provided the potential for mild hydrodesulfurization and manufacture of high-grade carbon materials.

3.
J Tradit Chin Med ; 43(5): 973-982, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37679985

RESUMEN

OBJECTIVE: To investigate the effects of acupoint catgut embedding for 3 weeks on lung tissue, blood immunoglobulin E (IgE) and interleutin-4 (IL-4), brain tissue microglia x-42 (OX-42) and toll-like receptor-2 (TLR-2) in rats with allergic rhinitis of lung deficiency type. METHODS: Forty-five female Sprague-Dawley rats were randomly divided for two times. The first time, they were randomly divided into model group and blank group (Group C) according to 2:1, and the second time, the model group were randomly divided into model control group (Group B) and intervention treatment group (Group A) according to 1:1. 15 in each group. For Group A and Group B, the lung deficiency model was made by "sulfur-moxa fumigation", and then the allergic rhinitis model was established by "ovalbumin (OVA) sensitization". Then catgut embedding was performed at acupoints in Group A and not in Group B. After 3 weeks, collect lung tissue samples for hematoxylin-eosin staining, then take blood to observe the concentration of IgE and IL-4, and finally take brain tissue to observe the results of OX-42 and TLR-2. RESULTS: IgE level (µg/mL) was (3.11 ± 0.20) in the Group A, (4.19 ± 0.44) in the Group B, and (2.29 ± 0.30) in the Group C (all < 0.001). IL-4 level (pg/mL) was (14.2 ± 0.7) in the Group A, (18.6 ± 2.4) in the Group B, and (11.4 ± 1.2) for the Group C (all < 0.001). The mean OD for OX-42 is (0.1728 ± 0.0016) in the Group A, (0.1810 ± 0.0046) in the Group B and (0.1674 ± 0.0025) in the Group C (all < 0.001). CONCLUSION: Although 3 weeks of acupoint catgut embedding already showed obvious efficacy on rats with allergic rhinitis, the allergic reaction in the body still continued. To achieve further treatment, prolonging the catgut embedding time is necessary.


Asunto(s)
Rinitis Alérgica , Receptor Toll-Like 2 , Femenino , Ratas , Animales , Ratas Sprague-Dawley , Catgut , Interleucina-4 , Rinitis Alérgica/terapia , Encéfalo , Inmunoglobulina E , Pulmón
4.
Commun Biol ; 6(1): 775, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491379

RESUMEN

Nuclear factor I B (NFIB) plays an important role in tumors. Our previous study found that NFIB can promote colorectal cancer (CRC) cell proliferation in acidic environments. However, its biological functions and the underlying mechanism in CRC are incompletely understood. Nicotinamide adenine dinucleotide (NAD+) effectively affects cancer cell proliferation. Nevertheless, the regulatory mechanism of NAD+ synthesis in cancer remains to be elucidated. Here we show NFIB promotes CRC proliferation in vitro and growth in vivo, and down-regulation of NFIB can reduce the level of NAD+. In addition, supplementation of NAD+ precursor NMN can recapture cell proliferation in CRC cells with NFIB knockdown. Mechanistically, we identified that NFIB promotes CRC cell proliferation by inhibiting miRNA-182-5p targeting and binding to NAMPT, the NAD+ salvage synthetic rate-limiting enzyme. Our results delineate a combination of high expression of NFIB and NAMPT predicted a clinical poorest prognosis. This work provides potential therapeutic targets for CRC treatment.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , Factores de Transcripción NFI/genética , Regulación hacia Abajo , NAD/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo
5.
Environ Sci Technol ; 57(26): 9884-9893, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37319319

RESUMEN

Transition metal sulfides have exhibited remarkable advantages in gaseous elemental mercury (Hg0) capture under high SO2 atmosphere, whereas the weak thermal stability significantly inhibits their practical application. Herein, a novel N,N-dimethylformamide (DMF) insertion strategy via crystal growth engineering was developed to successfully enhance the Hg0 capture ability of MoS2 at an elevated temperature for the first time. The DMF-inserted MoS2 possesses an edge-enriched structure and an expanded interlayer spacing (9.8 Å) and can maintain structural stability at a temperature as high as 272 °C. The saturated Hg0 adsorption capacities of the DMF-inserted MoS2 were measured to be 46.91 mg·g-1 at 80 °C and 27.40 mg·g-1 at 160 °C under high SO2 atmosphere. The inserted DMF molecules chemically bond with MoS2, which prevents possible structural collapse at a high temperature. The strong interaction of DMF with MoS2 nanosheets facilitates the growth of abundant defects and edge sites and enhances the formation of Mo5+/Mo6+ and S22- species, thereby improving the Hg0 capture activity at a wide temperature range. Particularly, Mo atoms on the (100) plane represent the strongest active sites for Hg0 oxidation and adsorption. The molecule insertion strategy developed in this work provides new insights into the engineering of advanced environmental materials.


Asunto(s)
Mercurio , Molibdeno , Disulfuros , Sulfuros
6.
Front Chem ; 10: 1037997, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304742

RESUMEN

With the rapid development of industrial society and humankind's prosperity, the growing demands of global energy, mainly based on the combustion of hydrocarbon fossil fuels, has become one of the most severe challenges all over the world. It is estimated that fossil fuel consumption continues to grow with an annual increase rate of 1.3%, which has seriously affected the natural environment through the emission of greenhouse gases, most notably carbon dioxide (CO2). Given these recognized environmental concerns, it is imperative to develop clean technologies for converting captured CO2 to high-valued chemicals, one of which is value-added hydrocarbons. In this article, environmental effects due to CO2 emission are discussed and various routes for CO2 hydrogenation to hydrocarbons including light olefins, fuel oils (gasoline and jet fuel), and aromatics are comprehensively elaborated. Our emphasis is on catalyst development. In addition, we present an outlook that summarizes the research challenges and opportunities associated with the hydrogenation of CO2 to hydrocarbon products.

7.
Huan Jing Ke Xue ; 43(9): 4532-4542, 2022 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-36096594

RESUMEN

The morphological characteristics of Cd, Cr, Cu, Ni, Pb, and Zn in sediments were analyzed using an improved BCR extraction method in four water types of Baiyangdian Lake:watercourse, trench, lake surface, and fish pond. The potential ecological risk index, secondary and primary phases, and risk assessment codes were used to systematically assess the pollution level and ecological risk of heavy metals in surface sediments. The results showed that:① the mean contents of heavy metals Cd, Cu, and Zn in the sediments were 0.37, 28.49, and 83.08 mg·kg-1, respectively, 94.91%, 73.91%, and 46.39% of which exceeded the soil background value. ② Cd was dominated by the non-residual fraction (F1+F2+F3) with a fraction ranging from 54% to 97%, whereas Cr was dominated by the residual fraction (F4) with a mass fraction ranging from 87% to 99%. Cu, Ni, Pb, and Zn were mainly in the fraction of residual fraction. In the non-residual fraction, Cu and Ni were mainly in the oxidizable fraction (F3) state, whereas Pb and Zn were mainly in the reducible fraction (F2) state. ③ The RAC risk assessment results showed that there were 68.97%, 39.89%, 54.84%, and 49.78% points in channel, trench, open water, and fish pond samples, respectively, of Cd at high risk. The Cu, Ni, and Pb were at low risk. In general, the overall heavy metal pollution level in Baiyangdian Lake was low, but Cd had ecological risk and high bioavailability in the Fuhe River of the Nanliuzhuang area and the Baigouyin River.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Cadmio , Monitoreo del Ambiente , Sedimentos Geológicos , Lagos , Plomo , Metales Pesados/análisis , Agua , Contaminantes Químicos del Agua/análisis
8.
Environ Sci Technol ; 56(19): 13664-13674, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36154115

RESUMEN

Copper sulfide (CuS) has received increasing attention as a promising material in gaseous elemental mercury (Hg0) capture, yet how to enhance its activity at elevated temperature remains a great challenge for practical application. Herein, simultaneous improvement in the activity and thermal stability of CuS toward Hg0 capture was successfully achieved for the first time by controlling the crystal growth. CuS with a moderate crystallinity degree of 68.8% showed a disordered structure yet high thermal stability up to 180 °C. Such disordered CuS can maintain its Hg0 capture activity stable during longtime test at a wide temperature range from 60 to 180 °C and displayed strong resistance to SO2 (6%) and H2O (8%). The significant improvement can be attributed to the synergistic effect of a moderately crystalline nature and a unique sulfur-rich interface. Moderate crystallinity guarantees the thermal stability of CuS and the presence of abundant defects, in which copper vacancy enhances significantly the Hg0 capture activity. The sulfur-rich interface enables CuS to provide plentiful highly active Sx2- sites for Hg0 adsorption. The interrelation between structure, reactivity, and thermal stability clarified in this work broadens the understanding toward Hg0 oxidation and adsorption over CuS and provides new insights into the rational design and engineering of advanced environmental materials.

9.
J Environ Sci (China) ; 119: 44-49, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35934464

RESUMEN

The presence of SO2 display significant effect on the mercury (Hg) adsorption ability of carbon-based sorbent. Yet the adsorption and oxidation of SO2 on carbon with oxygen group, as well as the roles of different sulfur oxide groups in Hg adsorption have heretofore been unclear. The formation of sulfur oxide groups by SO2 and their effects on Hg adsorption on carbon was detailed examined by the density functional theory. The results show that SO2 can be oxidized into SO3 by oxygen group on carbon surface. Both C-SO2 and C-SO3 can improve Hg adsorption on carbon site, while the promotive effect of C-SO2 is stronger than C-SO3. Electron density difference analyses reveal that sulfur oxide groups enhance the charge transfer ability of surface unsaturated carbon atom, thereby improving Hg adsorption. The experimental results confirm that surface active groups formed by SO2 adsorption is more active for Hg adsorption than the groups generated by SO3.


Asunto(s)
Mercurio , Adsorción , Carbono , Oxígeno , Óxidos de Azufre
10.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-463130

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the COVID-19 pandemic, is rapidly evolving. Due to the limited efficacy of vaccination in prevention of SARS-CoV-2 transmission and continuous emergence of variants of concern (VOC), including the currently most prevalent Delta variant, orally bioavailable and broadly efficacious antiviral drugs are urgently needed. Previously we showed that adenosine analogue 69-0 (also known as GS-441524), possesses potent anti-SARS-CoV-2 activity. Herein, we report that esterification of the 5-hydroxyl moieties of 69-0 markedly improved the antiviral potency. The 5-hydroxyl-isobutyryl prodrug, ATV006, showed excellent oral bioavailability in rats and cynomolgus monkeys and potent antiviral efficacy against different VOCs of SARS-CoV-2 in cell culture and three mouse models. Oral administration of ATV006 significantly reduced viral loads, alleviated lung damage and rescued mice from death in the K18-hACE2 mouse model challenged with the Delta variant. Moreover, ATV006 showed broad antiviral efficacy against different mammal-infecting coronaviruses. These indicate that ATV006 represents a promising oral drug candidate against SARS-CoV-2 VOCs and other coronaviruses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA