Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Econ Entomol ; 111(3): 1290-1297, 2018 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-29590397

RESUMEN

Experimental approaches to studying the consequences of pesticide use, including impacts on beneficial insects, are vital; however, they can be limited in scale and realism. We show that an ecoinformatics approach that leverages existing data on pesticides, pests, and beneficials across multiple fields can provide complementary insights. We do this using a multi-year dataset (2002-2013) on pesticide applications and density estimates of two pests, citrus thrips (Scirtothrips citri (Moulton [Thysanoptera: Thripidae])) and citrus red mites (Panonychus citri McGregor [Acari: Tetranychidae]), and a natural enemy (Euseius spp. predatory mites) collected from citrus groves in the San Joaquin Valley of California. Using correlative analyses, we investigated the long-term consequences of pesticide use on S. citri and P. citri population densities to evaluate the hypothesis that the pest status of these species is largely due to the disruption of natural biological control-i.e., these are induced pests. We also evaluated short-term pesticide efficacy (suppression of citrus thrips and citrus red mite populations immediately post-application) and asked if it was correlated with the suppression of Euseius predator populations. Although the short-term efficacy of different pesticides varied significantly, our dataset does not suggest that the use of citrus pesticides suppressed Euseius densities or worsened pest problems. We also find that there is no general trade-off between pesticide efficacy and pesticide risk to Eusieus, such that highly effective and minimally disruptive compounds were available to citrus growers during the studied time period.


Asunto(s)
Ácaros y Garrapatas/efectos de los fármacos , Acaricidas/toxicidad , Cadena Alimentaria , Insecticidas/toxicidad , Control Biológico de Vectores , Conducta Predatoria/efectos de los fármacos , Ácaros y Garrapatas/fisiología , Animales , California , Citrus/crecimiento & desarrollo , Control de Insectos , Densidad de Población , Tetranychidae/efectos de los fármacos , Tetranychidae/fisiología , Thysanoptera/efectos de los fármacos , Thysanoptera/fisiología , Control de Ácaros y Garrapatas
2.
J Anim Ecol ; 86(3): 501-510, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28138991

RESUMEN

The role of predation in determining the metacommunity assembly model of prey communities is understudied relative to that of interspecific competition among prey. Previous work on metacommunity dynamics of competing species has shown that sorting by habitat patch type and spatial patterning can be affected by disturbances. Microcosms offer a useful model system to test the effect of multi-trophic interactions and disturbance on metacommunity dynamics. Here, we investigated the potential role of predators in enhancing or disrupting sorting and spatial pattern among prey in experimental landscapes. We exposed multi-trophic protist microcosm landscapes with one predator, two competing prey, two patch resource types, and localized dispersal to three disturbance regimes (none, low, and high). Then, we used variation partitioning and spatial clustering analysis to analyse the results. In contrast with previous experiments that did not manipulate predators, we found that patch type did not structure prey communities very well. Instead, we found that it was the distribution of the predator that most strongly predicted the composition of the prey community. The predator impacted species sorting by (1) preferentially consuming one prey, thereby acting as a strong local environmental driver, and by (2) indirectly magnifying the impact of patch food resources on the less preferred prey. The predator also enhanced spatial signal in the prey community because of its limited dispersal. Our results indicate that predators can strongly influence prey species sorting and spatial patterning in metacommunities in ways that would otherwise be attributed to stochastic effects, such as dispersal limitation or demographic drift. Therefore, whenever possible, predators should be explicitly included as separate explanatory factors in variation partitioning analyses.


Asunto(s)
Cilióforos/fisiología , Cadena Alimentaria , Animales , Modelos Biológicos , Dinámica Poblacional , Conducta Predatoria
3.
Ecology ; 96(12): 3234-42, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26909429

RESUMEN

Colonization-extinction dynamics and species sorting among habitats deter- mine the distribution of species within metacommunities. Theory suggests that disturbances reduce the importance of species sorting and enhance spatial patterning and stochastic effects, however this has not yet been experimentally shown. We examined how extinctions in a heterogeneous landscape of patches affects the influence of environmental, spatial, and stochastic factors on community composition in a simple two-species, two-habitat, protist metacommunity where each species dominates in a different habitat type. We imposed four different levels of random extinctions on local patches and monitored changes in the metacommunity through time. We found that near-steady state patterns of community variability developed relatively rapidly (within nine colonization-extinction cycles) and that increased extinction rate produced altered patterns of community regulation by reducing environmental control and increasing spatial and stochastic effects. Our results indicate a possible explanation for the combination of environmental, spatial and stochastic effects observed in natural metacommunities.


Asunto(s)
Chlamydomonas reinhardtii/fisiología , Ecosistema , Modelos Biológicos , Paramecium/fisiología , Extinción Biológica , Dinámica Poblacional , Factores de Tiempo
4.
PLoS One ; 8(10): e78523, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24147137

RESUMEN

The proliferation of oil palm plantations has led to dramatic changes in tropical landscapes across the globe. However, relatively little is known about the effects of oil palm expansion on biodiversity, especially in key ecosystem-service providing organisms like pollinators. Rapid land use change is exacerbated by limited knowledge of the mechanisms causing biodiversity decline in the tropics, particularly those involving landscape features. We examined these mechanisms by undertaking a survey of orchid bees, a well-known group of Neotropical pollinators, across forest and oil palm plantations in Costa Rica. We used chemical baits to survey the community in four regions: continuous forest sites, oil palm sites immediately adjacent to forest, oil palm sites 2 km from forest, and oil palm sites greater than 5 km from forest. We found that although orchid bees are present in all environments, orchid bee communities diverged across the gradient, and community richness, abundance, and similarity to forest declined as distance from forest increased. In addition, mean phylogenetic distance of the orchid bee community declined and was more clustered in oil palm. Community traits also differed with individuals in oil palm having shorter average tongue length and larger average geographic range size than those in the forest. Our results indicate two key features about Neotropical landscapes that contain oil palm: 1) oil palm is selectively permeable to orchid bees and 2) orchid bee communities in oil palm have distinct phylogenetic and trait structure compared to communities in forest. These results suggest that conservation and management efforts in oil palm-cultivating regions should focus on landscape features.


Asunto(s)
Abejas/fisiología , Orchidaceae , Animales
5.
Ecology ; 94(12): 2898-906, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24597234

RESUMEN

Landscape connectivity has been shown to alter community assembly and its consequences. Here we examine how strong, sudden changes in connectivity may affect community assembly by conducting experiments on the effects of "community mixing," situations where previously isolated communities become completely connected with consequent community reorganization. Previous theory indicates that assembly history dictates the outcome of mixing: mixing randomly assembled communities leads to a final community with random representation from the original communities, while mixing communities that were assembled via a long history of colonizations and extinctions leads to strong asymmetry, with one community dominating the other. It also predicts that asymmetry should be stronger in the presence of predators in the system. We experimentally tested and explored this theory by mixing aquatic microcosms inhabited by a complex food web of heterotrophic protists, and algae. Our results confirm the prediction that long assembly history can produce asymmetry under mixing and suggest these dynamics could be important in natural systems. However, in contrast to previous theory we also found asymmetry weaker under mixing of communities with more complex trophic structure.


Asunto(s)
Simulación por Computador , Ecosistema , Conducta Alimentaria , Plantas/clasificación , Animales , Bacterias
6.
Nat Commun ; 3: 1234, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23212363

RESUMEN

One of the simplest hypotheses used to explain species coexistence is the competition-colonization trade-off, that is, species can stably coexist in a landscape if they show a trade-off between competitive and colonization abilities. Despite extensive theory, the dynamics predicted to result from competition-colonization trade-offs are largely untested. Landscape change, such as habitat destruction, is thought to greatly influence coexistence under competition-colonization dynamics, although there is no formal test of this prediction. Here we present the first illustration of competition-colonization dynamics that fully transposes theory into a controlled experimental metacommunity of two Pseudomonas bacterial strains. The competition-colonization dynamics were achieved by directly manipulating trade-off strength and colonization rates to generate the full range of coexistence conditions and responses to habitat destruction. Our study successfully generates competition-colonization dynamics matching theoretical predictions, and our results further reveal a negative relationship between diversity and productivity when scaling up to entire metacommunities.


Asunto(s)
Bacterias/crecimiento & desarrollo , Dinámica Poblacional , Ecología , Ecosistema , Modelos Biológicos , Pseudomonas
7.
Environ Entomol ; 37(3): 734-40, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18559179

RESUMEN

The occurrence, intensity, and composition of mutualisms are dependent not only on the co-occurrence of mutualists, but also the broader biotic context in which they are embedded. Here, the influence of the specific nest tree identity of the ant Azteca instabilis (F. Smith) on the density of the green coffee scale (Coccus viridis Green) was studied in a coffee agroecosystem in southern Mexico. The hypothesis that an indirect competitive interaction for ant attendance occurs between a scale species (Octolecanium sp. Kondo) in the canopy of the shade tree Inga micheliana Harms and C. viridis, which inhabits coffee bushes (Coffea arabica) beneath the shade trees was tested. Coffee bushes beneath a different shade tree species (Alchornea latifolia Swartz) were used as an indication of C. viridis density in a noncompetitive environment. Results indicate that C. viridis occurs in significantly lower density adjacent to nests in Inga, supporting the hypothesis of indirect competition. Additional experimentation suggests that there is a mutualism between Azteca and Octolecanium and that this interaction may be mediated by a hierarchy in ant attendance of scale insects. Our results show the importance of considering the biotic context of ant-hemipteran mutualisms. In coffee agroecosystems, consideration of shade tree diversity and species composition may be directly applicable to the biological control of insect pests.


Asunto(s)
Hormigas , Coffea/parasitología , Fabaceae/parasitología , Hemípteros/fisiología , Simbiosis , Animales , Conducta Competitiva , Ecosistema , Euphorbiaceae , México , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...