Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38649930

RESUMEN

AIM: Corallococcus species are diverse in the natural environment with 10 new Corallococcus species having been characterized in just the last 5 years. As well as being an abundant myxobacterial genus, they produce several secondary metabolites, including Corallopyronin, Corramycin, Coralmycin, and Corallorazine. We isolated a novel strain Corallococcus spp RDP092CA from soil in South Wales, UK, using Candida albicans as prey bait and characterized its predatory activities against pathogenic bacteria and yeast. METHODS AND RESULTS: The size of the RDP092CA genome was 8.5 Mb with a G + C content of 71.4%. Phylogenetically, RDP092CA is closely related to Corallococcus interemptor, C. coralloides, and C. exiguus. However, genome average nucleotide identity and digital DNA-DNA hybridization values are lower than 95% and 70% when compared to those type strains, implying that it belongs to a novel species. The RDP092CA genome harbours seven types of biosynthetic gene clusters (BGCs) and 152 predicted antimicrobial peptides. In predation assays, RDP092CA showed good predatory activity against Escherichia coli, Pseudomonas aeruginosa, Citrobacter freundii, and Staphylococcus aureus but not against Enterococcus faecalis. It also showed good antibiofilm activity against all five bacteria in biofilm assays. Antifungal activity against eight Candida spp. was variable, with particularly good activity against Meyerozyma guillermondii DSM 6381. Antimicrobial peptide RDP092CA_120 exhibited potent antibiofilm activity with >50% inhibition and >60% dispersion of biofilms at concentrations down to 1 µg/ml. CONCLUSIONS: We propose that strain RDP092CA represents a novel species with promising antimicrobial activities, Corallococcus senghenyddensis sp. nov. (=NBRC 116490T =CCOS 2109T), based on morphological, biochemical, and genomic features.


Asunto(s)
Myxococcales , Filogenia , Myxococcales/genética , Myxococcales/metabolismo , Myxococcales/aislamiento & purificación , Composición de Base , Genoma Bacteriano , Microbiología del Suelo , Antiinfecciosos/farmacología , Pruebas de Sensibilidad Microbiana , Candida albicans/efectos de los fármacos , Familia de Multigenes , ADN Bacteriano/genética , ARN Ribosómico 16S/genética
2.
Probiotics Antimicrob Proteins ; 15(1): 202-214, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36586039

RESUMEN

Antimicrobial resistance (AMR) is a global concern, and as soon as new antibiotics are introduced, resistance to those agents emerges. Therefore, there is an increased appetite for alternative antimicrobial agents to traditional antibiotics. Here, we used in silico methods to investigate potential antimicrobial peptides (AMPs) from predatory myxobacteria. Six hundred seventy-two potential AMP sequences were extracted from eight complete myxobacterial genomes. Most putative AMPs were predicted to be active against Klebsiella pneumoniae with least activity being predicted against Staphylococcus aureus. One hundred seventeen AMPs (defined here as 'potent putative AMPs') were predicted to have very good activity against more than two bacterial pathogens, and these were characterized further in silico. All potent putative AMPs were predicted to have anti-inflammatory and antifungal properties, but none was predicted to be active against viruses. Twenty six (22%) of them were predicted to be hemolytic to human erythrocytes, five were predicted to have anticancer properties, and 56 (47%) were predicted to be biofilm active. In vitro assays using four synthesized AMPs showed high MIC values (e.g. So_ce_56_913 250 µg/ml and Coral_AMP411 125 µg/ml against E. coli). However, antibiofilm assays showed a substantial reduction in numbers (e.g. Coral_AMP411 and Myxo_mac104 showed a 69% and 73% reduction, respectively, at the lowest concentration against E. coli) compared to traditional antibiotics. Fourteen putative AMPs had high sequence similarity to proteins which were functionally associated with proteins of known function. The myxobacterial genomes also possessed a variety of biosynthetic gene clusters (BGCs) that can encode antimicrobial secondary metabolites, but their numbers did not correlate with those of the AMPs. We suggest that AMPs from myxobacteria are a promising source of novel antimicrobial agents with a plethora of biological properties.


Asunto(s)
Antibacterianos , Péptidos Antimicrobianos , Myxococcales , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Escherichia coli , Pruebas de Sensibilidad Microbiana , Myxococcales/genética
4.
Genome Biol Evol ; 12(12): 2289-2302, 2020 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-33022031

RESUMEN

Members of the predatory Myxococcales (myxobacteria) possess large genomes, undergo multicellular development, and produce diverse secondary metabolites, which are being actively prospected for novel drug discovery. To direct such efforts, it is important to understand the relationships between myxobacterial ecology, evolution, taxonomy, and genomic variation. This study investigated the genomes and pan-genomes of organisms within the Myxococcaceae, including the genera Myxococcus and Corallococcus, the most abundant myxobacteria isolated from soils. Previously, ten species of Corallococcus were known, whereas six species of Myxococcus phylogenetically surrounded a third genus (Pyxidicoccus) composed of a single species. Here, we describe draft genome sequences of five novel species within the Myxococcaceae (Myxococcus eversor, Myxococcus llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogochensis, Myxococcus vastator, Pyxidicoccus caerfyrddinensis, and Pyxidicoccus trucidator) and for the Pyxidicoccus type species strain, Pyxidicoccus fallax DSM 14698T. Genomic and physiological comparisons demonstrated clear differences between the five novel species and every other Myxococcus or Pyxidicoccus spp. type strain. Subsequent analyses of type strain genomes showed that both the Corallococcus pan-genome and the combined Myxococcus and Pyxidicoccus (Myxococcus/Pyxidicoccus) pan-genome are large and open, but with clear differences. Genomes of Corallococcus spp. are generally smaller than those of Myxococcus/Pyxidicoccus spp. but have core genomes three times larger. Myxococcus/Pyxidicoccus spp. genomes are more variable in size, with larger and more unique sets of accessory genes than those of Corallococcus species. In both genera, biosynthetic gene clusters are relatively enriched in the shell pan-genomes, implying they grant a greater evolutionary benefit than other shell genes, presumably by conferring selective advantages during predation.


Asunto(s)
Genoma Bacteriano , Myxococcales/genética , Filogenia , Genómica , ARN Ribosómico 16S/genética
5.
Mol Omics ; 16(4): 387-397, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32373862

RESUMEN

Extracellular membrane vesicles are produced by all domains of life (bacteria, archaea and eukaryotes). Bacterial extracellular vesicles (outer membrane vesicles or OMVs) are produced by outer membrane blebbing, and contain proteins, nucleic acids, virulence factors, lipids and metabolites. OMV functions depend on their internal composition, therefore understanding the proteome of OMVs, and how it varies between organisms, is imperative. Here, we report a comparative proteomic profiling of OMVs from strains of Myxococcus xanthus, a predatory species of Gram-negative myxobacteria whose secretions include secondary metabolites and hydrolytic enzymes, thought to be involved in prey lysis. Ten strains were chosen for study, of which seven had genome sequences available. The remaining three strains were genome sequenced allowing definition of the core and accessory genes and genome-derived proteins found within the pan-genome and pan-proteome respectively. OMVs were isolated from each strain and proteins identified using mass spectrometry. The M. xanthus OMV pan-proteome was found to contain tens of 'core' and hundreds of 'accessory' proteins. Properties of the OMV pan-proteome were compared with those of the pan-proteome deduced from the M. xanthus pan-genome. On average, 80% of 'core' OMV proteins are encoded by genes of the core genome, yet the OMV proteomes of individual strains contain subsets of core genome-derived proteins which only partially overlap. In addition, the distribution of characteristics of vesicle proteins does not correlate with the genome-derived proteome characteristic distribution. We hypothesize that M. xanthus cells package a personalized subset of proteins whose availability is only partially dictated by the presence/absence of encoding genes within the genome.


Asunto(s)
Proteínas Bacterianas/metabolismo , Vesículas Extracelulares/metabolismo , Myxococcus xanthus/metabolismo , Proteoma , Proteómica , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Cromatografía Liquida , Genoma Bacteriano , Genómica/métodos , Myxococcus xanthus/genética , Proteómica/métodos , Espectrometría de Masas en Tándem
6.
Appl Environ Microbiol ; 86(2)2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31676482

RESUMEN

Corallococcus spp. are common soil-dwelling organisms which kill and consume prey microbes through the secretion of antimicrobial substances. Two species of Corallococcus have been described previously (Corallococcus coralloides and Corallococcus exiguus). A polyphasic approach, including biochemical analysis of fatty acid methyl esters, substrate utilization, and sugar assimilation assays, was taken to characterize eight Corallococcus species strains and the two type strains. The genomes of all strains, including that of C. exiguus DSM 14696T (newly reported here), shared an average nucleotide identity below 95% and digital DNA-DNA hybridization scores of less than 70%, indicating that they belong to distinct species. In addition, we characterized the prey range and antibiotic resistance profile of each strain, illustrating the diversity of antimicrobial activity and, thus, the potential for drug discovery within the Corallococcus genus. Each strain gave a distinct profile of properties, which together with their genomic differences supports the proposal of the eight candidate strains as novel species. The eight candidates are as follows: Corallococcus exercitus sp. nov. (AB043AT= DSM 108849T = NBRC 113887T), Corallococcus interemptor sp. nov. (AB047AT= DSM 108843T = NBRC 113888T), Corallococcus aberystwythensis sp. nov. (AB050AT = DSM 108846T = NBRC 114019T), Corallococcus praedator sp. nov. (CA031BT= DSM 108841T = NBRC 113889T), Corallococcus sicarius sp. nov. (CA040BT= DSM 108850T = NBRC 113890T), Corallococcus carmarthensis sp. nov. (CA043DT= DSM 108842T = NBRC 113891T), Corallococcus llansteffanensis sp. nov. (CA051BT= DSM 108844T = NBRC 114100T), and Corallococcus terminator sp. nov. (CA054AT= DSM 108848T = NBRC 113892T).IMPORTANCECorallococcus is a genus of predators with broad prey ranges, whose genomes contain large numbers of gene clusters for secondary metabolite biosynthesis. The physiology and evolutionary heritage of eight Corallococcus species strains were characterized using a range of analyses and assays. Multiple metrics confirmed that each strain belonged to a novel species within the Corallococcus genus. The strains exhibited distinct patterns of drug resistance and predatory activity, which mirrored their possession of diverse sets of biosynthetic genes. The breadth of antimicrobial activities observed within the Corallococcus genus highlights their potential for drug discovery and suggests a previous underestimation of both their taxonomic diversity and biotechnological potential. Taxonomic assignment of environmental isolates to novel species allows us to begin to characterize the diversity and evolution of members of this bacterial genus with potential biotechnological importance, guiding future bioprospecting efforts for novel biologically active metabolites and antimicrobials.


Asunto(s)
Cadena Alimentaria , Genoma Bacteriano , Myxococcales/clasificación , Myxococcales/genética , Myxococcales/metabolismo , Filogenia
7.
Front Microbiol ; 10: 2650, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798566

RESUMEN

Despite widespread use in human biology, genome-wide association studies (GWAS) of bacteria are few and have, to date, focused primarily on pathogens. Myxobacteria are predatory microbes with large patchwork genomes, with individual strains secreting unique cocktails of predatory proteins and metabolites. We investigated whether a GWAS strategy could be applied to myxobacteria to identify genes associated with predation. Deduced proteomes from 29 myxobacterial genomes (including eight Myxococcus genomes sequenced for this study), were clustered into orthologous groups, and the presence/absence of orthologues assessed in superior and inferior predators of ten prey organisms. 139 'predation genes' were identified as being associated significantly with predation, including some whose annotation suggested a testable predatory mechanism. Formaldehyde dismutase (fdm) was associated with superior predation of Pseudomonas aeruginosa, and predatory activity of a strain lacking fdm could be increased by the exogenous addition of a formaldehyde detoxifying enzyme, suggesting that production of formaldehyde by P. aeruginosa acts as an anti-predation behaviour. This study establishes the utility of bacterial GWAS to investigate microbial processes beyond pathogenesis, giving plausible and verifiable associations between gene presence/absence and predatory phenotype. We propose that the slow growth rate of myxobacteria, coupled with their predatory mechanism of constitutive secretion, has rendered them relatively resistant to genome streamlining. The resultant genome expansion made possible their observed accumulation of prey-specific predatory genes, without requiring them to be selected for by frequent or recent predation on diverse prey, potentially explaining both the large pan-genome and broad prey range of myxobacteria.

8.
Appl Environ Microbiol ; 84(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30194103

RESUMEN

Herpetosiphon spp. are ubiquitous, chemoheterotrophic, filamentous gliding bacteria with the ability to prey on other microbes through a "wolf pack" mechanism. The genus currently comprises four known species (H. aurantiacus, H. geysericola, H. giganteus, and H. gulosus), which produce antimicrobial secondary metabolites such as siphonazole. As part of a study isolating myxobacterial wolf pack predators, we serendipitously isolated a novel environmental strain (CA052B) from the edge of a stream at Llansteffan, United Kingdom, which was identified as a member of the Herpetosiphon genus. A lawn culture method was utilized to analyze the predatory activity of CA052B against 10 prey organisms of clinical relevance. CA052B was found to prey on Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Enterococcus faecalis, Bacillus subtilis, and Candida albicans Purified CA052B outer membrane vesicles also exhibited killing activity against the prey organisms when tested by flow cytometry. 16S rRNA sequencing of CA052B showed 98 to 99% identity with other Herpetosiphon species members. Comparing the genome of CA052B with the publicly available genomes of H. aurantiacus and H. geysericola revealed average nucleotide identities of only 84% and 91%, respectively, whereas the genome-to-genome distance calculation showed sequence identities of 28.2% and 46.6%, respectively. Biochemical characterization also revealed distinctions between CA052B and both H. gulosus and H. giganteus Thus, strain CA052BT (= DSM 107618T = NBRC 113495T) is proposed to be the type strain of a novel species, Herpetosiphon llansteffanense sp. nov. The genome sequence of CA052B also revealed diverse secondary metabolite biosynthetic clusters, encouraging further exploration of its antibiotic production potential.IMPORTANCE Predatory bacteria are able to kill and consume other microbes and are therefore of interest as potential sources of new antimicrobial substances for applications in the clinic. "Wolf pack" predators kill prey by secreting antimicrobial substances into their surroundings, and those substances can kill prey organisms independently of the predatory cells. The genus Herpetosiphon exhibits wolf pack predation, yet its members are poorly described compared to other wolf pack predators, such as the myxobacteria. By providing a thorough characterization of a novel Herpetosiphon species, including its predatory, biochemical, and genomic features, this study increases our understanding of genomic variation within the Herpetosiphon genus and how that variation affects predatory activity. This will facilitate future rational exploitation of genus members (and other wolf pack predators) as sources of novel antimicrobials.


Asunto(s)
Chloroflexi/fisiología , Genoma Bacteriano , Chloroflexi/clasificación , Chloroflexi/genética , Chloroflexi/aislamiento & purificación , ADN Bacteriano/genética , Filogenia , ARN Ribosómico 16S/genética , Ríos/microbiología , Metabolismo Secundario
9.
Microb Genom ; 4(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29345219

RESUMEN

Predation is a fundamental ecological process, but within most microbial ecosystems the molecular mechanisms of predation remain poorly understood. We investigated transcriptome changes associated with the predation of Escherichia coli by the myxobacterium Myxococcus xanthus using mRNA sequencing. Exposure to pre-killed prey significantly altered expression of 1319 predator genes. However, the transcriptional response to living prey was minimal, with only 12 genes being significantly up-regulated. The genes most induced by prey presence (kdpA and kdpB, members of the kdp regulon) were confirmed by reverse transcriptase quantitative PCR to be regulated by osmotic shock in M. xanthus, suggesting indirect sensing of prey. However, the prey showed extensive transcriptome changes when co-cultured with predator, with 40 % of its genes (1534) showing significant changes in expression. Bacteriolytic M. xanthus culture supernatant and secreted outer membrane vesicles (OMVs) also induced changes in expression of large numbers of prey genes (598 and 461, respectively). Five metabolic pathways were significantly enriched in prey genes up-regulated on exposure to OMVs, supernatant and/or predatory cells, including those for ribosome and lipopolysaccharide production, suggesting that the prey cell wall and protein production are primary targets of the predator's attack. Our data suggest a model of the myxobacterial predatome (genes and proteins associated with predation) in which the predator constitutively produces secretions which disable its prey whilst simultaneously generating a signal that prey is present. That signal then triggers a regulated feeding response in the predator.


Asunto(s)
Escherichia coli/genética , Myxococcales/genética , Myxococcus xanthus/genética , Conducta Predatoria , Transcriptoma , Adenosina Trifosfatasas/genética , Animales , Antiinfecciosos/farmacología , Proteínas Bacterianas/genética , Bacteriólisis , Proteínas de Transporte de Catión/genética , Técnicas de Cocultivo , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Myxococcales/crecimiento & desarrollo , Myxococcus xanthus/crecimiento & desarrollo , Presión Osmótica , ARN Mensajero , Regulón
10.
Front Microbiol ; 9: 3187, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619233

RESUMEN

Corallococcus is an abundant genus of predatory soil myxobacteria, containing two species, C. coralloides (for which a genome sequence is available) and C. exiguus. To investigate the genomic basis of predation, we genome-sequenced 23 Corallococcus strains. Genomic similarity metrics grouped the sequenced strains into at least nine distinct genomospecies, divided between two major sub-divisions of the genus, encompassing previously described diversity. The Corallococcus pan-genome was found to be open, with strains exhibiting highly individual gene sets. On average, only 30.5% of each strain's gene set belonged to the core pan-genome, while more than 75% of the accessory pan-genome genes were present in less than four of the 24 genomes. The Corallococcus accessory pan-proteome was enriched for the COG functional category "Secondary metabolism," with each genome containing on average 55 biosynthetic gene clusters (BGCs), of which only 20 belonged to the core pan-genome. Predatory activity was assayed against ten prey microbes and found to be mostly incongruent with phylogeny or BGC complement. Thus, predation seems multifactorial, depending partially on BGC complement, but also on the accessory pan-genome - genes most likely acquired horizontally. These observations encourage further exploration of Corallococcus as a source for novel bioactive secondary metabolites and predatory proteins.

11.
Front Microbiol ; 9: 3209, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30662435

RESUMEN

Rhodococcus sp.strain BUPNP1 can utilize the priority environmental pollutant 4-nitrophenol (4-NP) as its sole source of carbon and energy. In this study, genome and transcriptome sequencing were used to gain mechanistic insights into 4-NP degradation. The draft BUPNP1 genome is 5.56 Mbp and encodes 4,963 proteins, which are significantly enriched in hypothetical proteins compared to other Rhodococcus sp. A novel 4-NP catabolic 43 gene cluster "nph" was identified that encodes all the genes required for the conversion of 4-NP into acetyl-CoA and succinate, via 4-nitrocatechol. The cluster also encodes pathways for the catabolism of other diverse aromatic compounds. Comparisons between BUPN1 growing on either 4-NP or glucose resulted in significant changes in the expression of many nph cluster genes, and, during 4-NP growth, a loss of lipid inclusions. Moreover, fatty acid degradation/synthesis genes were found within the nph cluster, suggesting fatty acids may be concurrently catabolised with 4-NP. A holistic model for the action of the nph gene cluster is proposed which incorporates genetic architecture, uptake and metabolism of aromatic compounds, enzymatic activities and transcriptional regulation. The model provides testable hypotheses for further biochemical investigations into the genes of the nph cluster, for potential exploitation in bioremediation.

12.
Front Microbiol ; 8: 1593, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28878752

RESUMEN

Myxobacteria are natural predators of microorganisms and the subjects of concerted efforts to identify novel antimicrobial compounds. Myxobacterial predatory activity seems to require more than just the possession of specific antimicrobial metabolites. Thus a holistic approach to studying predation promises novel insights into antimicrobial action. Here, we report the isolation of 113 myxobacteria from samples of soil taken from a range of habitats in mid Wales. Predatory activity of each isolate was quantified against a panel of clinically important prey organisms, including Klebsiella pneumoniae, Proteus mirabilis, Candida albicans, Enterococcus faecalis, and three species of Staphylococcus. Myxobacterial isolates exhibited a wide range of predation activity profiles against the panel of prey. Efficient predation of all prey by isolates within the collection was observed, with K. pneumoniae and C. albicans proving particularly susceptible to myxobacterial predation. Notably efficient predators tended to be proficient at predating multiple prey organisms, suggesting they possess gene(s) encoding a broad range killing activity. However, predatory activity was not congruent with phylogeny, suggesting prey range is subject to relatively rapid specialization, potentially involving lateral gene transfer. The broad but patchy prey ranges observed for natural myxobacterial isolates also implies multiple (potentially overlapping) genetic determinants are responsible for dictating predatory activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...