Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 41(16): 7931-7948, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36173706

RESUMEN

The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus since its emergence in 2019 has yielded several new viral variants with varied infectivity, disease severity, and antigenicity. Although most mutations are expected to be relatively neutral, mutations at the Spike region of the genome have shown to have a major impact on the viral transmission and infection in humans. Therefore, it is crucial to survey the structures of spike protein across the global virus population to contextualize the rate of therapeutic success against these variants. In this study, high-frequency mutational variants from different geographic regions were pooled in order to study the structural evolution of the spike protein through drug docking and MD simulations. We investigated the mutational burden in the spike subregions and have observed that the different variants harbour unique signature patterns in the spike subregions, with certain domains being highly prone to mutations. Further, the MD simulations and docking study revealed that different variants show differential stability when docked for the same set of drug targets. This work sheds light on the mutational burden and the stability landscape of the spike protein across the variants from different geographical regions.Communicated by Ramaswamy H. Sarma.

2.
PLoS One ; 16(3): e0248553, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33735271

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which is a novel human coronavirus strain (HCoV) was initially reported in December 2019 in Wuhan City, China. This acute infection caused pneumonia-like symptoms and other respiratory tract illness. Its higher transmission and infection rate has successfully enabled it to have a global spread over a matter of small time. One of the major concerns involving the SARS-COV-2 is the mutation rate, which enhances the virus evolution and genome variability, thereby making the design of therapeutics difficult. In this study, we identified the most common haplotypes from the haplotype network. The conserved genes and population level variants were analysed. Non-Structural Protein 10 (NSP10), Nucleoprotein, Papain-like protease (Plpro or NSP3) and 3-Chymotrypsin like protease (3CLpro or NSP5), which were conserved at the highest threshold, were used as drug targets for molecular dynamics simulations. Darifenacin, Nebivolol, Bictegravir, Alvimopan and Irbesartan are among the potential drugs, which are suggested for further pre-clinical and clinical trials. This particular study provides a comprehensive targeting of the conserved genes. We also identified the mutation frequencies across the viral genome.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Reposicionamiento de Medicamentos/métodos , SARS-CoV-2/genética , Descubrimiento de Drogas/métodos , Genoma Viral , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Tasa de Mutación , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA