Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(2): 355-358, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38194567

RESUMEN

We present an optimal configuration for Stokes polarimeters based on liquid crystal variable retarders, with the minimum number of measurements. Due to the inherent variations of the director orientation of the liquid crystal molecules, we propose a configuration that minimizes the sensibility of the polarimeter to fast-axis variations. For the optimization we consider a scheme that maximizes the volume of a tetrahedron inscribed in the Poincare sphere, to address additive and Poisson noise, with one of the vertices invariant to changes in the axis positions. We provide numerical simulations, considering misalignment errors, to analyze the robustness of the configuration. The results show that the proposed configuration helps to maintain the volume enclosed by the tetrahedron with high tolerance to fast-axis orientation errors. The condition number will remain below 3.07 for common misalignment errors and below 1.88 for more controlled liquid crystals. This optimization will improve the performance of liquid crystals polarimeters, with a more robust configuration that also considers misalignment errors, beyond additive and Poisson noise.

2.
J Biophotonics ; 16(4): e202200308, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36519499

RESUMEN

Polarimetric data is nowadays used to build recognition models for the characterization of organic tissues or the early detection of some diseases. Different Mueller matrix-derived polarimetric observables, which allow a physical interpretation of a specific characteristic of samples, are proposed in literature to feed the required recognition algorithms. However, they are obtained through mathematical transformations of the Mueller matrix and this process may loss relevant sample information in search of physical interpretation. In this work, we present a thorough comparative between 12 classification models based on different polarimetric datasets to find the ideal polarimetric framework to construct tissues classification models. The study is conducted on the experimental Mueller matrices images measured on different tissues: muscle, tendon, myotendinous junction and bone; from a collection of 165 ex-vivo chicken thighs. Three polarimetric datasets are analyzed: (A) a selection of most representative metrics presented in literature; (B) Mueller matrix elements; and (C) the combination of (A) and (B) sets. Results highlight the importance of using raw Mueller matrix elements for the design of classification models.


Asunto(s)
Algoritmos , Tendones , Análisis Espectral , Músculos , Unión Miotendinosa
3.
Sci Rep ; 12(1): 18479, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323771

RESUMEN

Imaging polarimetry methods have proved their suitability to enhance the image contrast between tissues and structures in organic samples, or even to reveal structures hidden in regular intensity images. These methods are nowadays used in a wide range of biological applications, as for the early diagnosis of different pathologies. To include the discriminatory potential of different polarimetric observables in a single image, a suitable strategy reported in literature consists in associating different observables to different color channels, giving rise to pseudo-colored images helping the visualization of different tissues in samples. However, previous reported polarimetric based pseudo-colored images of tissues are mostly based on simple linear combinations of polarimetric observables whose weights are set ad-hoc, and thus, far from optimal approaches. In this framework, we propose the implementation of two pseudo-colored methods. One is based on the Euclidean distances of actual values of pixels and an average value taken over a given region of interest in the considered image. The second method is based on the likelihood for each pixel to belong to a given class. Such classes being defined on the basis of a statistical model that describes the statistical distribution of values of the pixels in the considered image. The methods are experimentally validated on four different biological samples, two of animal origin and two of vegetal origin. Results provide the potential of the methods to be applied in biomedical and botanical applications.


Asunto(s)
Modelos Estadísticos , Percepción Visual , Animales , Análisis Espectral
4.
Sci Rep ; 12(1): 14743, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042370

RESUMEN

This paper highlights the potential of using polarimetric methods for the inspection of plant diseased tissues. We show how depolarizing observables are a suitable tool for the accurate discrimination between healthy and diseased tissues due to the pathogen infection of plant samples. The analysis is conducted on a set of different plant specimens showing various disease symptoms and infection stages. By means of a complete image Mueller polarimeter, we measure the experimental Mueller matrices of the samples, from which we calculate a set of metrics analyzing the depolarization content of the inspected leaves. From calculated metrics, we demonstrate, in a qualitative and quantitative way, how depolarizing information of vegetal tissues leads to the enhancement of image contrast between healthy and diseased tissues, as well as to the revelation of wounded regions which cannot be detected by means of regular visual inspections. Moreover, we also propose a pseudo-colored image method, based on the depolarizing metrics, capable to further enhance the visual image contrast between healthy and diseased regions in plants. The ability of proposed methods to characterize plant diseases (even at early stages of infection) may be of interest for preventing yield losses due to different plant pathogens.


Asunto(s)
Enfermedades de las Plantas , Plantas , Análisis Espectral
5.
Opt Express ; 29(23): 38811-38823, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34808925

RESUMEN

The link between depolarization measures and physical nature and structure of material media inducing depolarization is nowadays an open question. This article shows how the joint use of two complementary sets of depolarizing metrics, namely the Indices of polarimetric purity and the Components of purity, are sufficient to completely describe the integral depolarizing properties of a sample. Based on a collection of illustrative and representative polarimetric configurations, a clear and meaningful physical interpretation of such metrics is provided, thus extending the current tools and comprehension for the study and analysis of the depolarizing properties of material media. This study could be of interest to those users dealing with depolarization or depolarizing samples.

6.
Biomed Opt Express ; 12(8): 4852-4872, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34513229

RESUMEN

We highlight the potential of a predictive optical model method for tissue recognition, based on the statistical analysis of different polarimetric indicators that retrieve complete polarimetric information (selective absorption, retardance and depolarization) of samples. The study is conducted on the experimental Mueller matrices of four biological tissues (bone, tendon, muscle and myotendinous junction) measured from a collection of 157 ex-vivo chicken samples. Moreover, we perform several non-parametric data distribution analyses to build a logistic regression-based algorithm capable to recognize, in a single and dynamic measurement, whether a sample corresponds (or not) to one of the four different tissue categories.

7.
Sci Rep ; 11(1): 9415, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33941822

RESUMEN

In this work we demonstrate customized depolarization spatial patterns by imaging a dynamical time-dependent pixelated retarder. A proof-of-concept of the proposed method is presented, where a liquid-crystal spatial light modulator is used as a spatial retarder that emulates a controlled spatially variant depolarizing sample by addressing a time-dependent phase pattern. We apply an imaging Mueller polarimetric system based on a polarization camera to verify the effective depolarization effect. Experimental validation is provided by temporal integration on the detection system. The effective depolarizance results are fully described within a simple graphical approach which agrees with standard Mueller matrix decomposition methods. The potential of the method is discussed by means of three practical cases, which include non-reported depolarization spatial patterns, including exotic structures as a spirally shaped depolarization pattern.

8.
Sci Rep ; 11(1): 3913, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33594126

RESUMEN

Optical microscopy techniques for plant inspection benefit from the fact that at least one of the multiple properties of light (intensity, phase, wavelength, polarization) may be modified by vegetal tissues. Paradoxically, polarimetric microscopy although being a mature technique in biophotonics, is not so commonly used in botany. Importantly, only specific polarimetric observables, as birefringence or dichroism, have some presence in botany studies, and other relevant metrics, as those based on depolarization, are underused. We present a versatile method, based on a representative selection of polarimetric observables, to obtain and to analyse images of plants which bring significant information about their structure and/or the spatial organization of their constituents (cells, organelles, among other structures). We provide a thorough analysis of polarimetric microscopy images of sections of plant leaves which are compared with those obtained by other commonly used microscopy techniques in plant biology. Our results show the interest of polarimetric microscopy for plant inspection, as it is non-destructive technique, highly competitive in economical and time consumption, and providing advantages compared to standard non-polarizing techniques.

9.
J Biophotonics ; 13(8): e202000083, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32406967

RESUMEN

Classification of tissues is an important problem in biomedicine. An efficient tissue classification protocol allows, for instance, the guided-recognition of structures through treated images or discriminating between healthy and unhealthy regions (e.g., early detection of cancer). In this framework, we study the potential of some polarimetric metrics, the so-called depolarization spaces, for the classification of biological tissues. The analysis is performed using 120 biological ex vivo samples of three different tissues types. Based on these data collection, we provide for the first time a comparison between these depolarization spaces, as well as with most commonly used depolarization metrics, in terms of biological samples discrimination. The results illustrate the way to determine the set of depolarization metrics which optimizes tissue classification efficiencies. In that sense, the results show the interest of the method which is general, and which can be applied to study multiple types of biological samples, including of course human tissues. The latter can be useful for instance, to improve and to boost applications related to optical biopsy.


Asunto(s)
Imagen Óptica , Humanos , Análisis Espectral
10.
Opt Express ; 28(8): 10981-11000, 2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32403619

RESUMEN

We study the optimum operating conditions for a rotating retarder fixed polarizer (RRFP) when the measurements are not quasi-instantaneous but time-averaged. We obtain the optimum retardance and retarder orientations as a function of the integrated angle interval. We also study how the increase in the number of time-averaged measurements leads to a better equally weighted variance (EWV) value, and thus, to a better performance of the polarimeter in terms of noise amplification for the case of additive noise. Two different analyzers configurations are studied in this work: uniformly spaced retarder angles and when measurements are taken at optimum angles (non-uniformly spaced angles). We also consider the case of polychromatic illumination. We discuss the best measurement conditions in terms of the signal-to-noise ratio depending on whether there is a fixed or a limited amount of photons per measurement.

11.
PLoS One ; 14(3): e0213909, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30870523

RESUMEN

Optical methods, as fluorescence microscopy or hyperspectral imaging, are commonly used for plants visualization and characterization. Another powerful collection of optical techniques is the so-called polarimetry, widely used to enhance image contrast in multiple applications. In the botanical applications framework, in spite of some works have already highlighted the depolarizing print that plant structures left on input polarized beams, the potential of polarimetric methods has not been properly exploited. In fact, among the few works dealing with polarization and plants, most of them study light scattered by plants using the Degree of Polarization (DoP) indicator. Other more powerful depolarization metrics are nowadays neglected. In this context, we highlight the potential of different depolarization metrics obtained using the Mueller matrix (MM) measurement: the Depolarization Index and the Indices of Polarimetric Purity. We perform a qualitative and quantitative comparison between DoP- and MM-based images by studying a particular plant, the Hedera maroccana. We show how Mueller-based metrics are generally more suitable in terms of contrast than DoP-based measurements. The potential of polarimetric measurements in the study of plants is highlighted in this work, suggesting they can be applied to the characterization of plants, plant taxonomy, water stress in plants, and other botanical studies.


Asunto(s)
Botánica/métodos , Plantas/anatomía & histología , Botánica/instrumentación , Botánica/estadística & datos numéricos , Hedera/anatomía & histología , Luz , Microscopía de Polarización/métodos , Imagen Óptica/métodos , Hojas de la Planta/anatomía & histología , Dispersión de Radiación
12.
Sci Rep ; 8(1): 11263, 2018 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-30050141

RESUMEN

We present an experimental method, based on the use of dynamic split-lens configurations, useful for the trapping and spatial control of microparticles through the photophoretic force. In particular, the concept of split-lens configurations is exploited to experimentally create customized and reconfigurable three-dimensional light structures, in which carbon coated glass microspheres, with sizes in a range of 63-75 µm, can be captured. The generation of light spatial structures is performed by properly addressing phase distributions corresponding to different split-lens configurations onto a spatial light modulator (SLM). The use of an SLM allows a dynamic variation of the light structures geometry just by modifying few control parameters of easy physical interpretation. We provide some examples in video format of particle trapping processes. What is more, we also perform further spatial manipulation, by controlling the spatial position of the particles in the axial direction, demonstrating the generation of reconfigurable three-dimensional photophoretic traps for microscopic manipulation of absorbing particles.

13.
J Biophotonics ; 11(4): e201700189, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28981211

RESUMEN

We highlight the interest of using the indices of polarimetric purity (IPPs) to the inspection of biological tissues. The IPPs were recently proposed in the literature and they result in a further synthetization of the depolarizing properties of samples. Compared with standard polarimetric images of biological samples, IPP-based images lead to larger image contrast of some biological structures and to a further physical interpretation of the depolarizing mechanisms inherent to the samples. In addition, unlike other methods, their calculation do not require advanced algebraic operations (as is the case of polar decompositions), and they result in 3 indicators of easy implementation. We also propose a pseudo-colored encoding of the IPP information that leads to an improved visualization of samples. This last technique opens the possibility of tailored adjustment of tissues contrast by using customized pseudo-colored images. The potential of the IPP approach is experimentally highlighted along the manuscript by studying 3 different ex-vivo samples. A significant image contrast enhancement is obtained by using the IPP-based methods, compared to standard polarimetric images.


Asunto(s)
Imagen Óptica , Animales , Miembro Posterior/diagnóstico por imagen , Aumento de la Imagen , Conejos
14.
Opt Express ; 25(22): 26662-26677, 2017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-29092160

RESUMEN

This paper is devoted to the improvement of ground-based telescopes based on diffractive primary lenses, which provide larger aperture and relaxed surface tolerance compared to non-diffractive telescopes. We performed two different studies devised to thoroughly characterize and improve the performance of ground-based diffractive telescopes. On the one hand, we experimentally validated the suitability of the stitching error theory, useful to characterize the error performance of subaperture diffractive telescopes. On the other hand, we proposed a novel ground-based telescope incorporated in a Cassegrain architecture, leading to a telescope with enhanced performance. To test the stitching error theory, a 300 mm diameter, 2000 mm focal length transmissive stitching diffractive telescope, based on a three-belt subaperture primary lens, was designed and implemented. The telescope achieves a 78 cy/mm resolution within 0.15 degree field of view while the working wavelength ranges from 582.8 nm to 682.8 nm without any stitching error. However, the long optical track (35.49 m) introduces air turbulence that reduces the final images contrast in the ground-based test. To enhance this result, a same diameter compacted Cassegrain ground-based diffractive (CGD) telescope with the total track distance of 1.267 m, was implemented within the same wavelength. The ground-based CGD telescope provides higher resolution and better contrast than the transmissive configuration. Star and resolution tests were experimentally performed to compare the CGD and the transmissive configurations, providing the suitability of the proposed ground-based CGD telescope.

15.
Opt Express ; 25(20): 23773-23783, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-29041328

RESUMEN

We report the realization of polarization sensitive split lens configurations. While split lenses can be used to easily generate different types of controlled structured light patterns, their realization has been limited so far to scalar beams. Here we propose and experimentally demonstrate their generalization to vectorial split lenses, leading to light patterns with customized intensity and state of polarization. We demonstrate how these polarization split lenses can be experimentally implemented by means of an optical system using two liquid crystal spatial light modulators, each one phase modulating one orthogonal polarization component. As a result, we demonstrate the experimental generation of vectorial beams with different shapes generated with these dual polarization split lenses. Excellent experimental results are provided in each case. The proposed technique is a simple method to generate structured light beams with polarization diversity, with potential applications in polarimetry, customized illuminators or quantum optics.

16.
Appl Opt ; 56(27): 7672-7678, 2017 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-29047748

RESUMEN

Image quality is dramatically influenced by the stitching errors in a large-diameter stitching Fresnel lens. In this paper, we studied three kinds of errors that can cover all stitching errors in a Cornwell deployed Fresnel lens. In particular, a 300-mm-diameter, three-belt deployed Fresnel diffractive lens was simulated to investigate the stitching error. The star test and the resolution board test experiments were conducted, and the experimental results fit the simulation results. This means that our error analysis theory and simulation method are efficient and accurate and could be used to guide future super-large aperture stitching.

17.
Opt Lett ; 42(20): 4155-4158, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29028036

RESUMEN

In this work, we discuss the interest of using the indices of polarimetric purity (IPPs) as a criterion for the characterization and classification of depolarizing samples. We prove how differences in the depolarizing capability of samples, not seen by the commonly used depolarization index PΔ, are identified by the IPPs. The above-stated result is analyzed from a theoretical point of view and experimentally verified through a set of polarimetric measurements. We show how the approach presented here can be useful in easily synthetizing depolarizing samples with controlled depolarizing features, just by properly combining low-cost fully polarizing elements (such as linear retarders or polarizers).

18.
J Biomed Opt ; 22(5): 56004, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28492853

RESUMEN

We present mathematical formulas generalizing polarization gating (PG) techniques. PG refers to a collection of imaging methods based on the combination of different controlled polarization channels. In particular, we show how using the measured Mueller matrix (MM) of a sample, a widespread number of PG configurations can be evaluated just from analytical expressions based on the MM coefficients. We also show the interest of controlling the helicity of the states of polarization used for PG-based metrology, as this parameter has an impact in the image contrast of samples. In addition, we highlight the interest of combining PG techniques with tools of data analysis related to the MM formalism, such as the well-known MM decompositions. The method discussed in this work is illustrated with the results of polarimetric measurements done on artificial phantoms and real ex-vivo tissues.


Asunto(s)
Diagnóstico por Imagen/métodos , Modelos Teóricos , Fantasmas de Imagen
19.
Opt Lett ; 41(19): 4566-4569, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27749882

RESUMEN

We propose a new complete snapshot Stokes polarimeter based on a single biaxial crystal. It presents different strengths (snapshot, complete polarimetric measurements, large data redundancy, and high sensitivity) in a simple and compact optical arrangement. The polarimeter is experimentally implemented and analyzed in terms of accuracy and repeatability.

20.
Appl Opt ; 55(12): 3323-32, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27140106

RESUMEN

Mueller ellipsometry in the mid-infrared (IR) spectral range can be used to obtain information about chemical composition through the vibrational spectra of samples. In the case of very thin films (<100 nm), the ellipsometric spectral features due to vibrational absorption are in general quite weak, and sometimes they are hidden by the noise in the measured data. In this work, we present one method based on the use of optical spacers as a tool to enhance the sensitivity of IR Mueller ellipsometry. An optical spacer is a thin film made of a known material which is between the substrate and the layer of interest. We show that, when the thickness of the two layers fulfills a given condition, the spectral features due to vibrational absorptions are enhanced. We explain the enhancement effect in terms of the Airy formula. The theoretical discussion is illustrated with two examples. We analyzed polystyrene thin films deposited on silicon wafers. Some of the wafers were covered by a thin film of thermal silicon dioxide (SiO2), which was used as a spacer. The results show the suitability of the proposed technique to overcome the lack of sensitivity in ellipsometric measurements when it comes to working with either very thin films or materials with low absorption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...