Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38497812

RESUMEN

Down syndrome (DS) is characterized by skeletal and brain structural malformations, cognitive impairment, altered hippocampal metabolite concentration and gene expression imbalance. These alterations were usually investigated separately, and the potential rescuing effects of green tea extracts enriched in epigallocatechin-3-gallate (GTE-EGCG) provided disparate results due to different experimental conditions. We overcame these limitations by conducting the first longitudinal controlled experiment evaluating genotype and GTE-EGCG prenatal chronic treatment effects before and after treatment discontinuation. Our findings revealed that the Ts65Dn mouse model reflected the pleiotropic nature of DS, exhibiting brachycephalic skull, ventriculomegaly, neurodevelopmental delay, hyperactivity, and impaired memory robustness with altered hippocampal metabolite concentration and gene expression. GTE-EGCG treatment modulated most systems simultaneously but did not rescue DS phenotypes. On the contrary, the treatment exacerbated trisomic phenotypes including body weight, tibia microarchitecture, neurodevelopment, adult cognition, and metabolite concentration, not supporting the therapeutic use of GTE-EGCG as a prenatal chronic treatment. Our results highlight the importance of longitudinal experiments assessing the co-modulation of multiple systems throughout development when characterizing preclinical models in complex disorders and evaluating the pleiotropic effects and general safety of pharmacological treatments.


Asunto(s)
Síndrome de Down , Animales , Ratones , Femenino , Embarazo , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/genética , Trisomía , Genitales , Cabeza , Antioxidantes , Modelos Animales de Enfermedad
2.
Nutrients ; 14(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36235819

RESUMEN

Altered skeletal development in Down syndrome (DS) results in a brachycephalic skull, flattened face, shorter mandibular ramus, shorter limbs, and reduced bone mineral density (BMD). Our previous study showed that low doses of green tea extract enriched in epigallocatechin-3-gallate (GTE-EGCG), administered continuously from embryonic day 9 to postnatal day 29, reduced facial dysmorphologies in the Ts65Dn (TS) mouse model of DS, but high doses could exacerbate them. Here, we extended the analyses to other skeletal structures and systematically evaluated the effects of high and low doses of GTE-EGCG treatment over postnatal development in wild-type (WT) and TS mice using in vivo µCT and geometric morphometrics. TS mice developed shorter and wider faces, skulls, and mandibles, together with shorter and narrower humerus and scapula, and reduced BMD dynamically over time. Besides facial morphology, GTE-EGCG did not rescue any other skeletal phenotype in TS treated mice. In WT mice, GTE-EGCG significantly altered the shape of the skull and mandible, reduced the length and width of the long bones, and lowered the BMD. The disparate effects of GTE-EGCG depended on the dose, developmental timepoint, and anatomical structure analyzed, emphasizing the complex nature of DS and the need to further investigate the simultaneous effects of GTE-EGCG supplementation.


Asunto(s)
Catequina , Síndrome de Down , Animales , Antioxidantes/farmacología , Catequina/farmacología , Catequina/uso terapéutico , Modelos Animales de Enfermedad , Síndrome de Down/tratamiento farmacológico , Ratones , Extractos Vegetales/farmacología , Té/química
3.
Front Med (Lausanne) ; 9: 815739, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223915

RESUMEN

The brain and skeletal systems are intimately integrated during development through common molecular pathways. This is evidenced by genetic disorders where brain and skull dysmorphologies are associated. However, the mechanisms underlying neural and skeletal interactions are poorly understood. Using the Ts65Dn mouse model of Down syndrome (DS) as a case example, we performed the first longitudinal assessment of brain, skull and neurobehavioral development to determine alterations in the coordinated morphogenesis of brain and skull. We optimized a multimodal protocol combining in vivo micro-computed tomography (µCT) and magnetic resonance imaging (µMRI) with morphometric analyses and neurodevelopmental tests to longitudinally monitor the different systems' development trajectories during the first postnatal weeks. We also explored the impact of a perinatal treatment with green tea extracts enriched in epigallocatechin-3-gallate (GTE-EGCG), which can modulate cognition, brain and craniofacial development in DS. Our analyses quantified alterations associated with DS, with skull dysmorphologies appearing before brain anomalies, reduced integration and delayed acquisition of neurodevelopmental traits. Perinatal GTE-EGCG induced disparate effects and disrupted the magnitude of integration and covariation patterns between brain and skull. Our results exemplify how a longitudinal research approach evaluating the development of multiple systems can reveal the effect of morphological integration modulating the response of pathological phenotypes to treatment, furthering our understanding of complex genetic disorders.

4.
Sci Rep ; 11(1): 4715, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33633179

RESUMEN

Trisomy of human chromosome 21 (Down syndrome, DS) alters development of multiple organ systems, including the face and underlying skeleton. Besides causing stigmata, these facial dysmorphologies can impair vital functions such as hearing, breathing, mastication, and health. To investigate the therapeutic potential of green tea extracts containing epigallocatechin-3-gallate (GTE-EGCG) for alleviating facial dysmorphologies associated with DS, we performed an experimental study with continued pre- and postnatal treatment with two doses of GTE-EGCG supplementation in a mouse model of DS, and an observational study of children with DS whose parents administered EGCG as a green tea supplement. We evaluated the effect of high (100 mg/kg/day) or low doses (30 mg/kg/day) of GTE-EGCG, administered from embryonic day 9 to post-natal day 29, on the facial skeletal development in the Ts65Dn mouse model. In a cross-sectional observational study, we assessed the facial shape in DS and evaluated the effects of self-medication with green tea extracts in children from 0 to 18 years old. The main outcomes are 3D quantitative morphometric measures of the face, acquired either with micro-computed tomography (animal study) or photogrammetry (human study). The lowest experimentally tested GTE-EGCG dose improved the facial skeleton morphology in a mouse model of DS. In humans, GTE-EGCG supplementation was associated with reduced facial dysmorphology in children with DS when treatment was administered during the first 3 years of life. However, higher GTE-EGCG dosing disrupted normal development and increased facial dysmorphology in both trisomic and euploid mice. We conclude that GTE-EGCG modulates facial development with dose-dependent effects. Considering the potentially detrimental effects observed in mice, the therapeutic relevance of controlled GTE-EGCG administration towards reducing facial dysmorphology in young children with Down syndrome has yet to be confirmed by clinical studies.


Asunto(s)
Catequina/análogos & derivados , Suplementos Dietéticos , Síndrome de Down/tratamiento farmacológico , Cara , , Adolescente , Animales , Catequina/química , Catequina/uso terapéutico , Niño , Preescolar , Suplementos Dietéticos/análisis , Modelos Animales de Enfermedad , Síndrome de Down/patología , Cara/patología , Femenino , Humanos , Lactante , Masculino , Ratones , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Té/química
5.
Sci Rep ; 10(1): 18772, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33128010

RESUMEN

Up to 40% of congenital diseases present disturbances of brain and craniofacial development resulting in simultaneous alterations of both systems. Currently, the best available method to preclinically visualize the brain and the bones simultaneously is to co-register micro-magnetic resonance (µMR) and micro-computed tomography (µCT) scans of the same specimen. However, this requires expertise and access to both imaging techniques, dedicated software and post-processing knowhow. To provide a more affordable, reliable and accessible alternative, recent research has focused on optimizing a contrast-enhanced µCT protocol using iodine as contrast agent that delivers brain and bone images from a single scan. However, the available methods still cannot provide the complete visualization of both the brain and whole craniofacial complex. In this study, we have established an optimized protocol to diffuse the contrast into the brain that allows visualizing the brain parenchyma and the complete craniofacial structure in a single ex vivo µCT scan (whiceCT). In addition, we have developed a new technique that allows visualizing the brain ventricles using a bilateral stereotactic injection of iodine-based contrast (viceCT). Finally, we have tested both techniques in a mouse model of Down syndrome, as it is a neurodevelopmental disorder with craniofacial, brain and ventricle defects. The combined use of viceCT and whiceCT provides a complete visualization of the brain and bones with intact craniofacial structure of an adult mouse ex vivo using a single imaging modality.


Asunto(s)
Encéfalo/diagnóstico por imagen , Ventrículos Cerebrales/diagnóstico por imagen , Medios de Contraste/administración & dosificación , Cara/diagnóstico por imagen , Cráneo/diagnóstico por imagen , Microtomografía por Rayos X/métodos , Animales , Barrera Hematoencefálica , Encéfalo/anatomía & histología , Ventrículos Cerebrales/anatomía & histología , Medios de Contraste/farmacocinética , Cara/anatomía & histología , Yoduros/administración & dosificación , Ratones , Cráneo/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...