Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sports Med ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38627351

RESUMEN

BACKGROUND: The running performance of middle-distance and long-distance runners is determined by factors such as maximal oxygen uptake (VO2max), velocity at VO2max (vVO2max), maximum metabolic steady state (MMSS), running economy, and sprint capacity. Strength training is a proven strategy for improving running performance in endurance runners. However, the effects of different strength training methods on the determinants of running performance are unclear. OBJECTIVE: The aim of this systematic review with meta-analysis was to compare the effect of different strength training methods (e.g., high load, submaximal load, plyometric, combined) on performance (i.e., time trial and time until exhaustion) and its determinants (i.e., VO2max, vVO2max, MMSS, sprint capacity) in middle-distance and long-distance runners. METHODS: A systematic search was conducted across electronic databases (Web of Science, PubMed, SPORTDiscus, SCOPUS). The search included articles indexed up to November 2022, using various keywords combined with Boolean operators. The eligibility criteria were: (1) middle- and long-distance runners, without restriction on sex or training/competitive level; (2) application of a strength training method for ≥ 3 weeks, including high load training (≥ 80% of one repetition maximum), submaximal load training (40-79% of one repetition maximum), plyometric training, and combined training (i.e., two or more methods); (3) endurance running training control group under no strength training or under strength training with low loads (< 40% of one repetition maximum); (4) running performance, VO2max, vVO2max, MMSS and/or sprint capacity measured before and after a strength training intervention program; (5) randomized and non-randomized controlled studies. The certainty of evidence was assessed using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. A random-effects meta-analysis and moderator analysis were performed using Comprehensive meta-analysis (version 3.3.0.70). RESULTS: The certainty of the evidence was very low to moderate. The studies included 324 moderately trained, 272 well trained, and 298 highly trained athletes. The strength training programs were between 6 and 40 weeks duration, with one to four intervention sessions per week. High load and combined training methods induced moderate (effect size = - 0.469, p = 0.029) and large effect (effect size = - 1.035, p = 0.036) on running performance, respectively. While plyometric training was not found to have a significant effect (effect size = - 0.210, p = 0.064). None of the training methods improved VO2max, vVO2max, MMSS, or sprint capacity (all p > 0.072). Moderators related to subject (i.e., sex, age, body mass, height, VO2max, performance level, and strength training experience) and intervention (i.e., weeks, sessions per week and total sessions) characteristics had no effect on running performance variables or its determinants (all p > 0.166). CONCLUSIONS: Strength training with high loads can improve performance (i.e., time trial, time to exhaustion) in middle-distance and long-distance runners. A greater improvement may be obtained when two or more strength training methods (i.e., high load training, submaximal load training and/or plyometric training) are combined, although with trivial effects on VO2max, vVO2max, MMSS, or sprint capacity.

2.
Sports Med ; 54(4): 895-932, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38165636

RESUMEN

BACKGROUND: Running economy is defined as the energy demand at submaximal running speed, a key determinant of overall running performance. Strength training can improve running economy, although the magnitude of its effect may depend on factors such as the strength training method and the speed at which running economy is assessed. AIM: To compare the effect of different strength training methods (e.g., high loads, plyometric, combined methods) on the running economy in middle- and long-distance runners, over different running speeds, through a systematic review with meta-analysis. METHODS: A systematic search was conducted across several electronic databases including Web of Science, PubMed, SPORTDiscus, and SCOPUS. Using different keywords and Boolean operators for the search, all articles indexed up to November 2022 were considered for inclusion. In addition, the PICOS criteria were applied: Population: middle- and long-distance runners, without restriction on sex or training/competitive level; Intervention: application of a strength training method for ≥ 3 weeks (i.e., high loads (≥ 80% of one repetition maximum); submaximal loads [40-79% of one repetition maximum); plyometric; isometric; combined methods (i.e., two or more methods); Comparator: control group that performed endurance running training but did not receive strength training or received it with low loads (< 40% of one repetition maximum); Outcome: running economy, measured before and after a strength training intervention programme; Study design: randomized and non-randomized controlled studies. Certainty of evidence was assessed with the GRADE approach. A three-level random-effects meta-analysis and moderator analysis were performed using R software (version 4.2.1). RESULTS: The certainty of the evidence was found to be moderate for high load training, submaximal load training, plyometric training and isometric training methods and low for combined methods. The studies included 195 moderately trained, 272 well trained, and 185 highly trained athletes. The strength training programmes were between 6 and 24 weeks' duration, with one to four sessions executed per week. The high load and combined methods induced small (ES = - 0.266, p = 0.039) and moderate (ES = - 0.426, p = 0.018) improvements in running economy at speeds from 8.64 to 17.85 km/h and 10.00 to 14.45 km/h, respectively. Plyometric training improved running economy at speeds ≤ 12.00 km/h (small effect, ES = - 0.307, p = 0.028, ß1 = 0.470, p = 0.017). Compared to control groups, no improvement in running economy (assessed speed: 10.00 to 15.28 and 9.75 to 16.00 km/h, respectively) was noted after either submaximal or isometric strength training (all, p > 0.131). The moderator analyses showed that running speed (ß1 = - 0.117, p = 0.027) and VO2max (ß1 = - 0.040, p = 0.020) modulated the effect of high load strength training on running economy (i.e., greater improvements at higher speeds and higher VO2max). CONCLUSIONS: Compared to a control condition, strength training with high loads, plyometric training, and a combination of strength training methods may improve running economy in middle- and long-distance runners. Other methods such as submaximal load training and isometric strength training seem less effective to improve running economy in this population. Of note, the data derived from this systematic review suggest that although both high load training and plyometric training may improve running economy, plyometric training might be effective at lower speeds (i.e., ≤ 12.00 km/h) and high load strength training might be particularly effective in improving running economy (i) in athletes with a high VO2max, and (ii) at high running speeds. PROTOCOL REGISTRATION: The original protocol was registered ( https://osf.io/gyeku ) at the Open Science Framework.


Asunto(s)
Entrenamiento de Fuerza , Carrera , Humanos , Entrenamiento de Fuerza/métodos , Carrera/fisiología , Rendimiento Atlético/fisiología , Ejercicio Pliométrico , Resistencia Física/fisiología , Fuerza Muscular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...