Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Parasit Vectors ; 16(1): 225, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415248

RESUMEN

BACKGROUND: Triatomines are blood-sucking insects capable of transmitting Trypanosoma cruzi, the parasite that causes Chagas disease in humans. Vectorial transmission entails an infected triatomine feeding on a vertebrate host, release of triatomine infective dejections, and host infection by the entry of parasites through mucous membranes, skin abrasions, or the biting site; therefore, transmission to humans is related to the triatomine-human contact. In this cross-sectional study, we evaluated whether humans were detected in the diet of three sylvatic triatomine species (Mepraia parapatrica, Mepraia spinolai, and Triatoma infestans) present in the semiarid-Mediterranean ecosystem of Chile. METHODS: We used triatomines collected from 32 sites across 1100 km, with an overall T. cruzi infection frequency of 47.1% (N = 4287 total specimens) by conventional PCR or qPCR. First, we amplified the vertebrate cytochrome b gene (cytb) from all DNA samples obtained from triatomine intestinal contents. Then, we sequenced cytb-positive PCR products in pools of 10-20 triatomines each, grouped by site. The filtered sequences were grouped into amplicon sequence variants (ASVs) with a minimum abundance of 100 reads. ASVs were identified by selecting the best BLASTn match against the NCBI nucleotide database. RESULTS: Overall, 16 mammal (including human), 14 bird, and seven reptile species were identified in the diet of sylvatic triatomines. Humans were part of the diet of all analyzed triatomine species, and it was detected in 19 sites representing 12.19% of the sequences. CONCLUSIONS: Sylvatic triatomine species from Chile feed on a variety of vertebrate species; many of them are detected here for the first time in their diet. Our results highlight that the sylvatic triatomine-human contact is noteworthy. Education must be enforced for local inhabitants, workers, and tourists arriving in endemic areas to avoid or minimize the risk of exposure to Chagas disease vectors.


Asunto(s)
Enfermedad de Chagas , Triatoma , Triatominae , Trypanosoma cruzi , Animales , Humanos , Ecosistema , Chile/epidemiología , Estudios Transversales , Triatoma/genética , Triatoma/parasitología , Triatominae/parasitología , Trypanosoma cruzi/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Mamíferos/genética
3.
PLoS Negl Trop Dis ; 17(3): e0010613, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36930686

RESUMEN

Chagas disease is a significant public health risk in rural and semi-rural areas of Venezuela. Triatomine infection by the aetiological agent Trypanosoma cruzi is also observed in the Metropolitan District of Caracas (MDC), where foodborne T. cruzi outbreaks occasionally occur but active vector-to-human transmission (infection during triatomine bloodmeal) is considered absent. Citizen science-based domiciliary triatomine collection carried out between 2007 and 2013 in the MDC has advanced understanding of urban T. cruzi prevalence patterns and represents an important public awareness-building tool. The present study reports on the extension of this triatomine collection program from 2014 to 2019 and uses mitochondrial metabarcoding to assess feeding behavior in a subset of specimens. The combined, thirteen-year dataset (n = 4872) shows a high rate of T. cruzi infection (75.2%) and a predominance of Panstrongylus geniculatus (99.01%) among triatomines collected in domiciliary areas by MDC inhabitants. Collection also involved nymphal stages of P. geniculatus in 18 of 32 MDC parishes. Other collected species included Triatoma nigromaculata, Triatoma maculata, Rhodnius prolixus, and Panstrongylus rufotuberculatus. Liquid intestinal content indicative of bloodmeal was observed in 53.4% of analyzed specimens. Dissection pools representing 108 such visually blooded P. geniculatus specimens predominantly tested positive for human cytochrome b DNA (22 of 24 pools). Additional bloodmeal sources detected via metabarcoding analysis included key sylvatic T. cruzi reservoirs (opossum and armadillo), rodents, and various other synanthropic and domesticated animals. Results suggest a porous sylvatic-domiciliary transmission interface and ongoing adaptation of P. geniculatus to the urban ecotope. Although P. geniculatus defecation traits greatly limit the possibility of active T. cruzi transmission for any individual biting event, the cumulation of this low risk across a vast metropolitan population warrants further investigation. Efforts to prevent triatomine contact with human food sources also clearly require greater attention to protect Venezuela's capital from Chagas disease.


Asunto(s)
Enfermedad de Chagas , Panstrongylus , Triatoma , Trypanosoma cruzi , Animales , Humanos , Venezuela/epidemiología , Enfermedad de Chagas/epidemiología , Trypanosoma cruzi/genética
4.
Anim Microbiome ; 4(1): 53, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109797

RESUMEN

BACKGROUND: Rapidly spreading parasitic infections like amoebic gill disease (AGD) are increasingly problematic for Atlantic salmon reared in aquaculture facilities and potentially pose a risk to wild fish species in surrounding waters. Currently, it is not known whether susceptibility to AGD differs between wild and farmed salmon. Wild Atlantic salmon populations are declining and this emerging disease could represent an additional threat to their long-term viability. A better understanding of how AGD affects fish health is therefore relevant for the accurate assessment of the associated risk, both to farming and to the well-being of wild populations. In this study, we assessed the impact of natural exposure to AGD on wild, hybrid and farmed post-smolt Atlantic salmon reared in a sea farm together under common garden conditions. RESULTS: Wild fish showed substantially higher mortality levels (64%) than farmed fish (25%), with intermediate levels for hybrid fish (39%) suggesting that AGD susceptibility has an additive genetic basis. Metabolic rate measures representing physiological performance were similar among the genetic groups but were significantly lower in AGD-symptomatic fish than healthy fish. Gut microbial diversity was significantly lower in infected fish. We observed major shifts in gut microbial community composition in response to AGD infections. In symptomatic fish the relative abundance of key taxa Aliivibrio, Marinomonas and Pseudoalteromonas declined, whereas the abundance of Polaribacter and Vibrio increased compared to healthy fish. CONCLUSIONS: Our results highlight the stress AGD imposes on fish physiology and suggest that low metabolic-rate fish phenotypes may be associated with better infection outcomes. We consider the role increased AGD outbreak events and a warmer future may have in driving secondary bacterial infections and in reducing performance in farmed and wild fish.

5.
Parasite Epidemiol Control ; 19: e00273, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36118050

RESUMEN

Chagas Disease (CD), a chronic infection caused by the Trypanosoma cruzi parasite, is a Neglected Tropical Disease endemic to Latin America. With a re-emergence in Venezuela during the past two decades, the spread of CD has proved susceptible to, and inhibitable by a digital, real-time surveillance system effectuated by Citizen Scientists in communities throughout the country. The #TraeTuChipo (#BringYourKissingBug) campaign implemented in January 2020, has served as such a strategy counting on community engagement to define the current ecological distribution of CD vectors despite the absence of a functional national surveillance program. This pilot campaign collected data through online surveys, social media platforms, and/or telephone text messages. A total of 79 triatomine bugs were reported from eighteen Venezuelan states; 67 bugs were identified as Panstrongylus geniculatus, 1 as Rhodnius pictipes, 1 as Triatoma dimidiata, and 10 as Triatoma maculata. We analyzed 8 triatomine feces samples spotted from 4 Panstrongylus geniculatus which were confirmed positive by qPCR for T. cruzi . Further molecular characterization of discrete typing units (DTUs), revealed that all samples contained TcI, the most highly diverse and broadly distributed strain of T. cruzi. Moreover, analysis of the mitochondrial 12S gene revealed Myotis keaysi, Homo sapiens, and Gallus gallus as the main triatomine feeding sources. This study highlights a novel Citizen Science approach which may help improve the surveillance systems for CD in endemic countries.

7.
Microb Genom ; 8(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35748878

RESUMEN

Trypanosoma cruzi the causative agent of Chagas disease shows a marked genetic diversity and divided into at least six Discrete Typing Units (DTUs). High intra genetic variability has been observed in the TcI DTU, the most widely distributed DTU, where patterns of genomic diversity can provide information on ecological and evolutionary processes driving parasite population structure and genome organization. Chromosomal aneuploidies and rearrangements across multigene families represent an evidence of T. cruzi genome plasticity. We explored genomic diversity among 18 Colombian T. cruzi I clones and 15 T. cruzi I South American strains. Our results confirm high genomic variability, heterozygosity and presence of a clade compatible with the TcIdom genotype, described for strains from humans in Colombia and Venezuela. TcI showed high structural plasticity across the geographical region studied. Differential events of whole and segmental aneuploidy (SA) along chromosomes even between clones from the same strain were found and corroborated by the depth and allelic frequency. We detected loss of heterozygosity (LOH) events in different chromosomes, however, the size and location of segments under LOH varied between clones. Genes adjacent to breakpoints were evaluated, and retrotransposon hot spot genes flanked the beginning of segmental aneuploidies. Our results suggest that T. cruzi genomes, like those of Leishmania, may have a highly unstable structure and there is now an urgent need to design experiments to explore any potential adaptive role for the plasticity observed.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Aneuploidia , Enfermedad de Chagas/parasitología , Variación Genética , Humanos , Pérdida de Heterocigocidad , Trypanosoma cruzi/genética
8.
Microbiol Spectr ; 10(3): e0195321, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35532227

RESUMEN

Alpha mannose-oligosaccharide (MOS) prebiotics are widely deployed in animal agriculture as immunomodulators as well as to enhance growth and gut health. Their mode of action is thought to be mediated through their impact on host microbial communities and their associated metabolism. Bio-Mos is a commercially available prebiotic currently used in the agri-feed industry, but studies show contrasting results of its effect on fish performance and feed efficiency. Thus, detailed studies are needed to investigate the effect of MOS supplements on the fish microbiome to enhance our understanding of the link between MOS and gut health. To assess Bio-Mos for potential use as a prebiotic growth promoter in salmonid aquaculture, we have modified an established Atlantic salmon in vitro gut model, SalmoSim, to evaluate its impact on the host microbial communities. The microbial communities obtained from ceca compartments from four adult farmed salmon were inoculated in biological triplicate reactors in SalmoSim. Prebiotic treatment was supplemented for 20 days, followed by a 6-day washout period. Inclusion of Bio-Mos in the media resulted in a significant increase in formate (P = 0.001), propionate (P = 0.037) and 3-methyl butanoic acid (P = 0.024) levels, correlated with increased abundances of several, principally, anaerobic microbial genera (Fusobacterium, Agarivorans, Pseudoalteromonas). DNA metabarcoding with the 16S rDNA marker confirmed a significant shift in microbial community composition in response to Bio-Mos supplementation with observed increase in lactic acid producing Carnobacterium. In conjunction with previous in vivo studies linking enhanced volatile fatty acid production alongside MOS supplementation to host growth and performance, our data suggest that Bio-Mos may be of value in salmonid production. Furthermore, our data highlights the potential role of in vitro gut models to complementin vivo trials of microbiome modulators. IMPORTANCE In this paper we report the results of the impact of a prebiotic (alpha-MOS supplementation) on microbial communities, using an in vitro simulator of the gut microbial environment of the Atlantic salmon. Our data suggest that Bio-Mos may be of value in salmonid production as it enhances volatile fatty acid production by the microbiota from salmon pyloric ceca and correlates with a significant shift in microbial community composition with observed increase in lactic acid producing Carnobacterium. In conjunction with previous in vivo studies linking enhanced volatile fatty acid production alongside MOS supplementation to host growth and performance, our data suggest that Bio-Mos may be of value in salmonid production. Furthermore, our data highlights the potential role of in vitro gut models to augment in vivo trials of microbiome modulators.


Asunto(s)
Microbioma Gastrointestinal , Salmo salar , Alimentación Animal/análisis , Animales , Microbioma Gastrointestinal/genética , Ácido Láctico , Mananos , Oligosacáridos , Prebióticos
9.
PLoS Genet ; 18(2): e1010019, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35120121

RESUMEN

Accurate prediction of vectors dispersal, as well as identification of adaptations that allow blood-feeding vectors to thrive in built environments, are a basis for effective disease control. Here we adopted a landscape genomics approach to assay gene flow, possible local adaptation, and drivers of population structure in Rhodnius ecuadoriensis, an important vector of Chagas disease. We used a reduced-representation sequencing technique (2b-RADseq) to obtain 2,552 SNP markers across 272 R. ecuadoriensis samples from 25 collection sites in southern Ecuador. Evidence of high and directional gene flow between seven wild and domestic population pairs across our study site indicates insecticide-based control will be hindered by repeated re-infestation of houses from the forest. Preliminary genome scans across multiple population pairs revealed shared outlier loci potentially consistent with local adaptation to the domestic setting, which we mapped to genes involved with embryogenesis and saliva production. Landscape genomic models showed elevation is a key barrier to R. ecuadoriensis dispersal. Together our results shed early light on the genomic adaptation in triatomine vectors and facilitate vector control by predicting that spatially-targeted, proactive interventions would be more efficacious than current, reactive approaches.


Asunto(s)
Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/genética , Rhodnius/genética , Adaptación Biológica/genética , Animales , Vectores de Enfermedades , Ecosistema , Ecuador/epidemiología , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Flujo Génico , Insectos Vectores/genética , Metagenómica/métodos , Polimorfismo de Nucleótido Simple/genética , Densidad de Población , Rhodnius/patogenicidad , Transcriptoma/genética , Trypanosoma cruzi/genética
10.
Evol Appl ; 14(9): 2319-2332, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34603501

RESUMEN

Domestication leads to changes in traits that are under directional selection in breeding programmes, though unintentional changes in nonproduction traits can also arise. In offspring of escaping fish and any hybrid progeny, such unintentionally altered traits may reduce fitness in the wild. Atlantic salmon breeding programmes were established in the early 1970s, resulting in genetic changes in multiple traits. However, the impact of domestication on eye size has not been studied. We measured body size corrected eye size in 4000 salmon from six common garden experiments conducted under artificial and natural conditions, in freshwater and saltwater environments, in two countries. Within these common gardens, offspring of domesticated and wild parents were crossed to produce 11 strains, with varying genetic backgrounds (wild, domesticated, F1 hybrids, F2 hybrids and backcrosses). Size-adjusted eye size was influenced by both genetic and environmental factors. Domesticated fish reared under artificial conditions had smaller adjusted eye size when compared to wild fish reared under identical conditions, in both the freshwater and marine environments, and in both Irish and Norwegian experiments. However, in parr that had been introduced into a river environment shortly after hatching and sampled at the end of their first summer, differences in adjusted eye size observed among genetic groups were of a reduced magnitude and were nonsignificant in 2-year-old sea migrating smolts sampled in the river immediately prior to sea entry. Collectively, our findings could suggest that where natural selection is present, individuals with reduced eye size are maladapted and consequently have reduced fitness, building on our understanding of the mechanisms that underlie a well-documented reduction in the fitness of the progeny of domesticated salmon, including hybrid progeny, in the wild.

11.
Microbiome ; 9(1): 179, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465363

RESUMEN

BACKGROUND: The aquaculture sector now accounts for almost 50% of all fish for human consumption and is anticipated to provide 62% by 2030. Innovative strategies are being sought to improve fish feeds and feed additives to enhance fish performance, welfare, and the environmental sustainability of the aquaculture industry. There is still a lack of knowledge surrounding the importance and functionality of the teleost gut microbiome in fish nutrition. In vitro gut model systems might prove a valuable tool to study the effect of feed, and additives, on the host's microbial communities. Several in vitro gut models targeted at monogastric vertebrates are now in operation. Here, we report the development of an Atlantic salmon gut model, SalmoSim, to simulate three gut compartments (stomach, pyloric caecum, and midgut) and associated microbial communities. RESULTS: The gut model was established in a series of linked bioreactors seeded with biological material derived from farmed adult marine-phase salmon. We first aimed to achieve a stable microbiome composition representative of founding microbial communities derived from Atlantic salmon. Then, in biological triplicate, the response of the in vitro system to two distinct dietary formulations (fishmeal and fishmeal free) was compared to a parallel in vivo trial over 40 days. Metabarcoding based on 16S rDNA sequencing qPCR, ammoniacal nitrogen, and volatile fatty acid measurements were undertaken to survey the microbial community dynamics and function. SalmoSim microbiomes were indistinguishable (p = 0.230) from their founding inocula at 20 days and the most abundant genera (e.g., Psycrobacter, Staphylococcus, Pseudomonas) proliferated within SalmoSim (OTUs accounting for 98% of all reads shared with founding communities). Real salmon and SalmoSim responded similarly to the introduction of novel feed, with majority of the taxa (96% Salmon, 97% SalmoSim) unaffected, while a subset of taxa (e.g., a small fraction of Psychrobacter) was differentially affected across both systems. Consistent with a low impact of the novel feed on microbial fermentative activity, volatile fatty acid profiles were not significantly different in SalmoSim pre- and post-feed switch. CONCLUSION: By establishing stable and representative salmon gut communities, this study represents an important step in the development of an in vitro gut system as a tool for the improvement of fish nutrition and welfare. The steps of the system development described in this paper can be used as guidelines to develop various other systems representing other fish species. These systems, including SalmoSim, aim to be utilised as a prescreening tool for new feed ingredients and additives, as well as being used to study antimicrobial resistance and transfer and fundamental ecological processes that underpin microbiome dynamics and assembly. Video abstract.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Salmo salar , Alimentación Animal/análisis , Animales , Tracto Gastrointestinal , Humanos
12.
Commun Biol ; 4(1): 139, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514858

RESUMEN

Leishmania infantum causes visceral leishmaniasis, a deadly vector-borne disease introduced to the Americas during the colonial era. This non-native trypanosomatid parasite has since established widespread transmission cycles using alternative vectors, and human infection has become a significant concern to public health, especially in Brazil. A multi-kilobase deletion was recently detected in Brazilian L. infantum genomes and is suggested to reduce susceptibility to the anti-leishmanial drug miltefosine. We show that deletion-carrying strains occur in at least 15 Brazilian states and describe diversity patterns suggesting that these derive from common ancestral mutants rather than from recurrent independent mutation events. We also show that the deleted locus and associated enzymatic activity is restored by hybridization with non-deletion type strains. Genetic exchange appears common in areas of secondary contact but also among closely related parasites. We examine demographic and ecological scenarios underlying this complex L. infantum population structure and discuss implications for disease control.


Asunto(s)
ADN Protozoario/genética , Evolución Molecular , Genes Protozoarios , Genoma de Protozoos , Leishmania infantum/genética , Leishmaniasis Visceral/parasitología , Brasil/epidemiología , Eliminación de Gen , Leishmania infantum/patogenicidad , Leishmaniasis Visceral/epidemiología , Leishmaniasis Visceral/transmisión , Epidemiología Molecular , Filogenia , Eliminación de Secuencia , Secuenciación Completa del Genoma
13.
Anim Microbiome ; 3(1): 3, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33499999

RESUMEN

BACKGROUND: Disentangling the dynamics of microbial interactions within communities improves our comprehension of metacommunity assembly of microbiota during host development and under perturbations. To assess the impact of stochastic variation of neutral processes on microbiota structure and composition under disturbance, two types of microbial habitats, free-living (water), and host-associated (skin and gut) were experimentally exposed to either a constant or gradual selection regime exerted by two sublethal cadmium chloride dosages (CdCl2). Yellow Perch (Perca flavescens) was used as a piscivorous ecotoxicological model. Using 16S rDNA gene based metataxonomics, quantitative diversity metrics of water, skin and gut microbial communities were characterized along with development and across experimental conditions. RESULTS: After 30 days, constant and gradual selection regimes drove a significant alpha diversity increase for both skin and gut microbiota. In the skin, pervasive negative correlations between taxa in both selection regimes in addition to the taxonomic convergence with the environmental bacterial community, suggest a loss of colonisation resistance resulting in the dysbiosis of yellow perch microbiota. Furthermore, the network connectivity in gut microbiome was exclusively maintained by rare (low abundance) OTUs, while most abundant OTUs were mainly composed of opportunistic invaders such as Mycoplasma and other genera related to fish pathogens such as Flavobacterium. Finally, the mathematical modelling of community assembly using both non-linear least squares models (NLS) based estimates of migration rates and normalized stochasticity ratios (NST) based beta-diversity distances suggested neutral processes drove by taxonomic drift in host and water communities for almost all treatments. The NLS models predicted higher demographic stochasticity in the cadmium-free host and water microbiomes, however, NST models suggested higher ecological stochasticity under perturbations. CONCLUSIONS: Neutral models agree that water and host-microbiota assembly promoted by rare taxa have evolved predominantly under neutral processes with potential involvement of deterministic forces sourced from host filtering and cadmium selection. The early signals of perturbations in the skin microbiome revealed antagonistic interactions by a preponderance of negative correlations in the co-abundance networks. Our findings enhance our understanding of community assembly host-associated and free-living under anthropogenic selective pressure.

14.
PLoS Negl Trop Dis ; 15(1): e0008211, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33493212

RESUMEN

Malaria elimination in Latin America is becoming an elusive goal. Malaria cases reached a historical ~1 million in 2017 and 2018, with Venezuela contributing 53% and 51% of those cases, respectively. Historically, malaria incidence in southern Venezuela has accounted for most of the country's total number of cases. The efficient deployment of disease prevention measures and prediction of disease spread to new regions requires an in-depth understanding of spatial heterogeneity on malaria transmission dynamics. Herein, we characterized the spatial epidemiology of malaria in southern Venezuela from 2007 through 2017 and described the extent to which malaria distribution has changed country-wide over the recent years. We found that disease transmission was focal and more prevalent in the southeast region of southern Venezuela where two persistent hotspots of Plasmodium vivax (76%) and P. falciparum (18%) accounted for ~60% of the total number of cases. Such hotspots are linked to deforestation as a consequence of illegal gold mining activities. Incidence has increased nearly tenfold over the last decade, showing an explosive epidemic growth due to a significant lack of disease control programs. Our findings highlight the importance of spatially oriented interventions to contain the ongoing malaria epidemic in Venezuela. This work also provides baseline epidemiological data to assess cross-border malaria dynamics and advocates for innovative control efforts in the Latin American region.


Asunto(s)
Malaria/epidemiología , Malaria/transmisión , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Emigración e Inmigración , Femenino , Humanos , Incidencia , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Masculino , Persona de Mediana Edad , Plasmodium vivax , Factores Socioeconómicos , Venezuela/epidemiología , Adulto Joven
15.
PLoS Genet ; 16(12): e1009170, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33326438

RESUMEN

Analysis of genetic polymorphism is a powerful tool for epidemiological surveillance and research. Powerful inference from pathogen genetic variation, however, is often restrained by limited access to representative target DNA, especially in the study of obligate parasitic species for which ex vivo culture is resource-intensive or bias-prone. Modern sequence capture methods enable pathogen genetic variation to be analyzed directly from host/vector material but are often too complex and expensive for resource-poor settings where infectious diseases prevail. This study proposes a simple, cost-effective 'genome-wide locus sequence typing' (GLST) tool based on massive parallel amplification of information hotspots throughout the target pathogen genome. The multiplexed polymerase chain reaction amplifies hundreds of different, user-defined genetic targets in a single reaction tube, and subsequent agarose gel-based clean-up and barcoding completes library preparation at under 4 USD per sample. Our study generates a flexible GLST primer panel design workflow for Trypanosoma cruzi, the parasitic agent of Chagas disease. We successfully apply our 203-target GLST panel to direct, culture-free metagenomic extracts from triatomine vectors containing a minimum of 3.69 pg/µl T. cruzi DNA and further elaborate on method performance by sequencing GLST libraries from T. cruzi reference clones representing discrete typing units (DTUs) TcI, TcIII, TcIV, TcV and TcVI. The 780 SNP sites we identify in the sample set repeatably distinguish parasites infecting sympatric vectors and detect correlations between genetic and geographic distances at regional (< 150 km) as well as continental scales. The markers also clearly separate TcI, TcIII, TcIV and TcV + TcVI and appear to distinguish multiclonal infections within TcI. We discuss the advantages, limitations and prospects of our method across a spectrum of epidemiological research.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Genoma de Protozoos , Metagenoma , Metagenómica/métodos , Trypanosoma cruzi/genética , Secuenciación Completa del Genoma/métodos , Animales , Costos y Análisis de Costo , Código de Barras del ADN Taxonómico/economía , Código de Barras del ADN Taxonómico/normas , Vectores de Enfermedades , Hemípteros/parasitología , Metagenómica/economía , Metagenómica/normas , Polimorfismo Genético , Trypanosoma cruzi/patogenicidad , Virulencia/genética , Secuenciación Completa del Genoma/economía , Secuenciación Completa del Genoma/normas
16.
R Soc Open Sci ; 7(10): 200811, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33204455

RESUMEN

Livestock domestication has long been a part of agriculture, estimated to have first occurred approximately 10 000 years ago. Despite the plethora of traits studied, there is little understanding of the possible impacts domestication has had on internal organs, which are key determinants of survival. Moreover, the genetic basis of observed associated changes in artificial environments is still puzzling. Here we examine impacts of captivity on two organs in Atlantic salmon (Salar salar) that have been domesticated for approximately 50 years: heart and liver, in addition to growth. We studied multiple families of wild, domesticated, F1 and F2 hybrid, and backcrossed strains of S. salar in replicated common garden tanks during the freshwater and marine stages of development. Heart and liver weight were investigated, along with heart morphology metrics examined in just the wild, domesticated and F1 hybrid strains (heart height and width). Growth was positively linked with the proportion of the domesticated strain, and recombination in F2 hybrids (and the potential disruption of co-adapted gene complexes) did not influence growth. Despite the influence of domestication on growth, we found no evidence for domestication-driven divergence in heart or liver morphology. However, sexual dimorphism was detected in heart morphology, and after controlling for body size, females exhibited significantly larger heart weight and heart width when compared with males. Wild females also had an increased heart height when compared with wild males, and this was not observed in any other strain. Females sampled in saltwater showed significantly larger heart height with rounder hearts, than saltwater males. Collectively, these results demonstrate an additive basis of growth and, despite a strong influence of domestication on growth, no clear evidence of changes in heart or liver morphology associated with domestication was identified.

17.
Infect Genet Evol ; 86: 104616, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33157300

RESUMEN

INTRODUCTION: Venezuela and Colombia both adopted measures of containment early in response to the COVID-19 pandemic. However, Venezuela's ongoing humanitarian crisis has decimated its health care system, and forced millions of Venezuelans to flee through its porous border with Colombia. The extensive shared border, and illegal cross-border transit through improvised trails between the two countries are major challenges for public health authorities. We report the first SARS-CoV-2 genomes from Venezuela, and present a snapshot of the SARS-CoV-2 epidemiologic landscape in the Colombian-Venezuelan border region. METHODS: We sequenced and assembled viral genomes from total RNA extracted from nasopharyngeal (NP) clinical specimens using a custom reference-based analysis pipeline. Three assemblies obtained were subjected to typing using the Phylogenetic Assignment of Named Global Outbreak LINeages 'Pangolin' tool. A total of 376 publicly available SARS-CoV-2 genomes from South America were obtained from the GISAID database to perform comparative genomic analyses. Additionally, the Wuhan-1 strain was used as reference. RESULTS: We found that two of the SARS-CoV-2 genomes from Venezuela belonged to the B1 lineage, and the third to the B.1.13 lineage. We observed a point mutation in the Spike protein gene (D614G substitution), previously reported to be associated with increased infectivity, in all three Venezuelan genomes. Additionally, three mutations (R203K/G204R substitution) were present in the nucleocapsid (N) gene of one Venezuelan genome. CONCLUSIONS: Genomic sequencing demonstrates similarity between SARS-CoV-2 lineages from Venezuela and viruses collected from patients in bordering areas in Colombia and from Brazil, consistent with cross-border transit despite administrative measures including lockdowns. The presence of mutations associated with increased infectivity in the 3 Venezuelan genomes we report and Colombian SARS-CoV-2 genomes from neighboring borders areas may pose additional challenges for control of SARS-CoV-2 spread in the complex epidemiological landscape in Latin American countries. Public health authorities should carefully follow the progress of the pandemic and its impact on displaced populations within the region.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/virología , Colombia , Genoma Viral/genética , Humanos , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Venezuela
18.
J Anim Ecol ; 89(11): 2415-2426, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32858775

RESUMEN

It is increasingly recognized that symbiotic microbiota (especially those present in the gut) have important influences on the functioning of their host. Here, we review the interplay between this microbial community and the growth, metabolic rate and nutritional energy harvest of the host. We show how recent developments in experimental and analytical methods have allowed much easier characterization of the nature, and increasingly the functioning, of the gut microbiota. Manipulation studies that remove or augment gut microorganisms or transfer them between hosts have allowed unprecedented insights into their impact. Whilst much of the information to date has come from studies of laboratory model organisms, recent studies have used a more diverse range of host species, including those living in natural conditions, revealing their ecological relevance. The gut microbiota can provide the host with dietary nutrients that would be otherwise unobtainable, as well as allow the host flexibility in its capacity to cope with changing environments. The composition of the gut microbial community of a species can vary seasonally or when the host moves between environments (e.g. fresh and sea water in the case of migratory fish). It can also change with host diet choice, metabolic rate (or demands) and life stage. These changes in gut microbial community composition enable the host to live within different environments, adapt to seasonal changes in diet and maintain performance throughout its entire life history, highlighting the ecological relevance of the gut microbiota. Whilst it is evident that gut microbes can underpin host metabolic plasticity, the causal nature of associations between particular microorganisms and host performance is not always clear unless a manipulative approach has been used. Many studies have focussed on a correlative approach by characterizing microbial community composition, but there is now a need for more experimental studies in both wild and laboratory-based environments, to reveal the true role of gut microbiota in influencing the functioning of their hosts, including its capacity to tolerate environmental change. We highlight areas where these would be particularly fruitful in the context of ecological energetics.


Asunto(s)
Microbioma Gastrointestinal , Animales , Dieta , Peces , Simbiosis
19.
Parasit Vectors ; 13(1): 252, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32410645

RESUMEN

BACKGROUND: Trypanosoma cruzi, the causative agent of Chagas disease, and T. rangeli are kinetoplastid parasites endemic to Latin America. Although closely related to T. cruzi and capable of infecting humans, T. rangeli is non-pathogenic. Both parasite species are transmitted by triatomine bugs, and the presence of T. rangeli constitutes a confounding factor in the study of Chagas disease prevalence and transmission dynamics. Trypanosoma cruzi possesses high molecular heterogeneity: seven discrete typing units (DTUs) are currently recognized. In Ecuador, T. cruzi TcI and T. rangeli KP1(-) predominate, while other genetic lineages are seldom reported. METHODS: Infection by T. cruzi and/or T. rangeli in different developmental stages of triatomine bugs from two communities of southern Ecuador was evaluated via polymerase chain reaction product size polymorphism of kinetoplast minicircle sequences and the non-transcribed spacer region of the mini-exon gene (n = 48). Forty-three mini-exon amplicons were also deep sequenced to analyze single-nucleotide polymorphisms within single and mixed infections. Mini-exon products from ten monoclonal reference strains were included as controls. RESULTS: Trypanosoma cruzi genetic richness and diversity was not significantly greater in adult vectors than in nymphal stages III and V. In contrast, instar V individuals showed significantly higher T. rangeli richness when compared with other developmental stages. Among infected triatomines, deep sequencing revealed one T. rangeli infection (3%), 8 T. cruzi infections (23.5%) and 25 T. cruzi + T. rangeli co-infections (73.5%), suggesting that T. rangeli prevalence has been largely underestimated in the region. Furthermore, deep sequencing detected TcIV sequences in nine samples; this DTU had not previously been reported in Loja Province. CONCLUSIONS: Our data indicate that deep sequencing allows for better parasite identification/typing than amplicon size analysis alone for mixed infections containing both T. cruzi and T. rangeli, or when multiple T. cruzi DTUs are present. Additionally, our analysis showed extensive overlap among the parasite populations present in the two studied localities (c.28 km apart), suggesting active parasite dispersal over the study area. Our results highlight the value of amplicon sequencing methodologies to clarify the population dynamics of kinetoplastid parasites in endemic regions and inform control campaigns in southern Ecuador.


Asunto(s)
ADN Protozoario/genética , Exones/genética , Variación Genética , Trypanosoma cruzi/genética , Trypanosoma rangeli/genética , Animales , Ecuador/epidemiología , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Insectos Vectores/parasitología , Masculino , Filogenia , Triatominae/parasitología
20.
Genes (Basel) ; 11(1)2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31861501

RESUMEN

Pathogen fitness landscapes change when transmission cycles establish in non-native environments or spill over into new vectors and hosts. The introduction of Leishmania infantum in the Americas into the Neotropics during European colonization represents a unique case study to investigate the mechanisms of ecological adaptation of this important parasite. Defining the evolutionary trajectories that drive L. infantum fitness in this new environment are of great public health importance as they will allow unique insight into pathways of host/pathogen co-evolution and their consequences for region-specific changes in disease manifestation. This review summarizes current knowledge on L. infantum genetic and phenotypic diversity in the Americas and its possible role in the unique epidemiology of visceral leishmaniasis (VL) in the New World. We highlight the importance of appreciating adaptive molecular mechanisms in L. infantum to understand the parasites' successful establishment on the continent.


Asunto(s)
Leishmania infantum/clasificación , Leishmaniasis Visceral/transmisión , Océano Atlántico , Evolución Molecular , Aptitud Genética , Humanos , Leishmania infantum/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...