Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Parasite Epidemiol Control ; 19: e00273, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36118050

RESUMEN

Chagas Disease (CD), a chronic infection caused by the Trypanosoma cruzi parasite, is a Neglected Tropical Disease endemic to Latin America. With a re-emergence in Venezuela during the past two decades, the spread of CD has proved susceptible to, and inhibitable by a digital, real-time surveillance system effectuated by Citizen Scientists in communities throughout the country. The #TraeTuChipo (#BringYourKissingBug) campaign implemented in January 2020, has served as such a strategy counting on community engagement to define the current ecological distribution of CD vectors despite the absence of a functional national surveillance program. This pilot campaign collected data through online surveys, social media platforms, and/or telephone text messages. A total of 79 triatomine bugs were reported from eighteen Venezuelan states; 67 bugs were identified as Panstrongylus geniculatus, 1 as Rhodnius pictipes, 1 as Triatoma dimidiata, and 10 as Triatoma maculata. We analyzed 8 triatomine feces samples spotted from 4 Panstrongylus geniculatus which were confirmed positive by qPCR for T. cruzi . Further molecular characterization of discrete typing units (DTUs), revealed that all samples contained TcI, the most highly diverse and broadly distributed strain of T. cruzi. Moreover, analysis of the mitochondrial 12S gene revealed Myotis keaysi, Homo sapiens, and Gallus gallus as the main triatomine feeding sources. This study highlights a novel Citizen Science approach which may help improve the surveillance systems for CD in endemic countries.

3.
Microb Genom ; 8(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35748878

RESUMEN

Trypanosoma cruzi the causative agent of Chagas disease shows a marked genetic diversity and divided into at least six Discrete Typing Units (DTUs). High intra genetic variability has been observed in the TcI DTU, the most widely distributed DTU, where patterns of genomic diversity can provide information on ecological and evolutionary processes driving parasite population structure and genome organization. Chromosomal aneuploidies and rearrangements across multigene families represent an evidence of T. cruzi genome plasticity. We explored genomic diversity among 18 Colombian T. cruzi I clones and 15 T. cruzi I South American strains. Our results confirm high genomic variability, heterozygosity and presence of a clade compatible with the TcIdom genotype, described for strains from humans in Colombia and Venezuela. TcI showed high structural plasticity across the geographical region studied. Differential events of whole and segmental aneuploidy (SA) along chromosomes even between clones from the same strain were found and corroborated by the depth and allelic frequency. We detected loss of heterozygosity (LOH) events in different chromosomes, however, the size and location of segments under LOH varied between clones. Genes adjacent to breakpoints were evaluated, and retrotransposon hot spot genes flanked the beginning of segmental aneuploidies. Our results suggest that T. cruzi genomes, like those of Leishmania, may have a highly unstable structure and there is now an urgent need to design experiments to explore any potential adaptive role for the plasticity observed.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Aneuploidia , Enfermedad de Chagas/parasitología , Variación Genética , Humanos , Pérdida de Heterocigocidad , Trypanosoma cruzi/genética
4.
Microbiol Spectr ; 10(3): e0195321, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35532227

RESUMEN

Alpha mannose-oligosaccharide (MOS) prebiotics are widely deployed in animal agriculture as immunomodulators as well as to enhance growth and gut health. Their mode of action is thought to be mediated through their impact on host microbial communities and their associated metabolism. Bio-Mos is a commercially available prebiotic currently used in the agri-feed industry, but studies show contrasting results of its effect on fish performance and feed efficiency. Thus, detailed studies are needed to investigate the effect of MOS supplements on the fish microbiome to enhance our understanding of the link between MOS and gut health. To assess Bio-Mos for potential use as a prebiotic growth promoter in salmonid aquaculture, we have modified an established Atlantic salmon in vitro gut model, SalmoSim, to evaluate its impact on the host microbial communities. The microbial communities obtained from ceca compartments from four adult farmed salmon were inoculated in biological triplicate reactors in SalmoSim. Prebiotic treatment was supplemented for 20 days, followed by a 6-day washout period. Inclusion of Bio-Mos in the media resulted in a significant increase in formate (P = 0.001), propionate (P = 0.037) and 3-methyl butanoic acid (P = 0.024) levels, correlated with increased abundances of several, principally, anaerobic microbial genera (Fusobacterium, Agarivorans, Pseudoalteromonas). DNA metabarcoding with the 16S rDNA marker confirmed a significant shift in microbial community composition in response to Bio-Mos supplementation with observed increase in lactic acid producing Carnobacterium. In conjunction with previous in vivo studies linking enhanced volatile fatty acid production alongside MOS supplementation to host growth and performance, our data suggest that Bio-Mos may be of value in salmonid production. Furthermore, our data highlights the potential role of in vitro gut models to complementin vivo trials of microbiome modulators. IMPORTANCE In this paper we report the results of the impact of a prebiotic (alpha-MOS supplementation) on microbial communities, using an in vitro simulator of the gut microbial environment of the Atlantic salmon. Our data suggest that Bio-Mos may be of value in salmonid production as it enhances volatile fatty acid production by the microbiota from salmon pyloric ceca and correlates with a significant shift in microbial community composition with observed increase in lactic acid producing Carnobacterium. In conjunction with previous in vivo studies linking enhanced volatile fatty acid production alongside MOS supplementation to host growth and performance, our data suggest that Bio-Mos may be of value in salmonid production. Furthermore, our data highlights the potential role of in vitro gut models to augment in vivo trials of microbiome modulators.


Asunto(s)
Microbioma Gastrointestinal , Salmo salar , Alimentación Animal/análisis , Animales , Microbioma Gastrointestinal/genética , Ácido Láctico , Mananos , Oligosacáridos , Prebióticos
5.
PLoS Genet ; 18(2): e1010019, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35120121

RESUMEN

Accurate prediction of vectors dispersal, as well as identification of adaptations that allow blood-feeding vectors to thrive in built environments, are a basis for effective disease control. Here we adopted a landscape genomics approach to assay gene flow, possible local adaptation, and drivers of population structure in Rhodnius ecuadoriensis, an important vector of Chagas disease. We used a reduced-representation sequencing technique (2b-RADseq) to obtain 2,552 SNP markers across 272 R. ecuadoriensis samples from 25 collection sites in southern Ecuador. Evidence of high and directional gene flow between seven wild and domestic population pairs across our study site indicates insecticide-based control will be hindered by repeated re-infestation of houses from the forest. Preliminary genome scans across multiple population pairs revealed shared outlier loci potentially consistent with local adaptation to the domestic setting, which we mapped to genes involved with embryogenesis and saliva production. Landscape genomic models showed elevation is a key barrier to R. ecuadoriensis dispersal. Together our results shed early light on the genomic adaptation in triatomine vectors and facilitate vector control by predicting that spatially-targeted, proactive interventions would be more efficacious than current, reactive approaches.


Asunto(s)
Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/genética , Rhodnius/genética , Adaptación Biológica/genética , Animales , Vectores de Enfermedades , Ecosistema , Ecuador/epidemiología , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Flujo Génico , Insectos Vectores/genética , Metagenómica/métodos , Polimorfismo de Nucleótido Simple/genética , Densidad de Población , Rhodnius/patogenicidad , Transcriptoma/genética , Trypanosoma cruzi/genética
6.
PLoS Genet ; 16(12): e1009170, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33326438

RESUMEN

Analysis of genetic polymorphism is a powerful tool for epidemiological surveillance and research. Powerful inference from pathogen genetic variation, however, is often restrained by limited access to representative target DNA, especially in the study of obligate parasitic species for which ex vivo culture is resource-intensive or bias-prone. Modern sequence capture methods enable pathogen genetic variation to be analyzed directly from host/vector material but are often too complex and expensive for resource-poor settings where infectious diseases prevail. This study proposes a simple, cost-effective 'genome-wide locus sequence typing' (GLST) tool based on massive parallel amplification of information hotspots throughout the target pathogen genome. The multiplexed polymerase chain reaction amplifies hundreds of different, user-defined genetic targets in a single reaction tube, and subsequent agarose gel-based clean-up and barcoding completes library preparation at under 4 USD per sample. Our study generates a flexible GLST primer panel design workflow for Trypanosoma cruzi, the parasitic agent of Chagas disease. We successfully apply our 203-target GLST panel to direct, culture-free metagenomic extracts from triatomine vectors containing a minimum of 3.69 pg/µl T. cruzi DNA and further elaborate on method performance by sequencing GLST libraries from T. cruzi reference clones representing discrete typing units (DTUs) TcI, TcIII, TcIV, TcV and TcVI. The 780 SNP sites we identify in the sample set repeatably distinguish parasites infecting sympatric vectors and detect correlations between genetic and geographic distances at regional (< 150 km) as well as continental scales. The markers also clearly separate TcI, TcIII, TcIV and TcV + TcVI and appear to distinguish multiclonal infections within TcI. We discuss the advantages, limitations and prospects of our method across a spectrum of epidemiological research.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Genoma de Protozoos , Metagenoma , Metagenómica/métodos , Trypanosoma cruzi/genética , Secuenciación Completa del Genoma/métodos , Animales , Costos y Análisis de Costo , Código de Barras del ADN Taxonómico/economía , Código de Barras del ADN Taxonómico/normas , Vectores de Enfermedades , Hemípteros/parasitología , Metagenómica/economía , Metagenómica/normas , Polimorfismo Genético , Trypanosoma cruzi/patogenicidad , Virulencia/genética , Secuenciación Completa del Genoma/economía , Secuenciación Completa del Genoma/normas
7.
Infect Genet Evol ; 86: 104616, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33157300

RESUMEN

INTRODUCTION: Venezuela and Colombia both adopted measures of containment early in response to the COVID-19 pandemic. However, Venezuela's ongoing humanitarian crisis has decimated its health care system, and forced millions of Venezuelans to flee through its porous border with Colombia. The extensive shared border, and illegal cross-border transit through improvised trails between the two countries are major challenges for public health authorities. We report the first SARS-CoV-2 genomes from Venezuela, and present a snapshot of the SARS-CoV-2 epidemiologic landscape in the Colombian-Venezuelan border region. METHODS: We sequenced and assembled viral genomes from total RNA extracted from nasopharyngeal (NP) clinical specimens using a custom reference-based analysis pipeline. Three assemblies obtained were subjected to typing using the Phylogenetic Assignment of Named Global Outbreak LINeages 'Pangolin' tool. A total of 376 publicly available SARS-CoV-2 genomes from South America were obtained from the GISAID database to perform comparative genomic analyses. Additionally, the Wuhan-1 strain was used as reference. RESULTS: We found that two of the SARS-CoV-2 genomes from Venezuela belonged to the B1 lineage, and the third to the B.1.13 lineage. We observed a point mutation in the Spike protein gene (D614G substitution), previously reported to be associated with increased infectivity, in all three Venezuelan genomes. Additionally, three mutations (R203K/G204R substitution) were present in the nucleocapsid (N) gene of one Venezuelan genome. CONCLUSIONS: Genomic sequencing demonstrates similarity between SARS-CoV-2 lineages from Venezuela and viruses collected from patients in bordering areas in Colombia and from Brazil, consistent with cross-border transit despite administrative measures including lockdowns. The presence of mutations associated with increased infectivity in the 3 Venezuelan genomes we report and Colombian SARS-CoV-2 genomes from neighboring borders areas may pose additional challenges for control of SARS-CoV-2 spread in the complex epidemiological landscape in Latin American countries. Public health authorities should carefully follow the progress of the pandemic and its impact on displaced populations within the region.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/virología , Colombia , Genoma Viral/genética , Humanos , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Venezuela
8.
J Anim Ecol ; 89(11): 2415-2426, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32858775

RESUMEN

It is increasingly recognized that symbiotic microbiota (especially those present in the gut) have important influences on the functioning of their host. Here, we review the interplay between this microbial community and the growth, metabolic rate and nutritional energy harvest of the host. We show how recent developments in experimental and analytical methods have allowed much easier characterization of the nature, and increasingly the functioning, of the gut microbiota. Manipulation studies that remove or augment gut microorganisms or transfer them between hosts have allowed unprecedented insights into their impact. Whilst much of the information to date has come from studies of laboratory model organisms, recent studies have used a more diverse range of host species, including those living in natural conditions, revealing their ecological relevance. The gut microbiota can provide the host with dietary nutrients that would be otherwise unobtainable, as well as allow the host flexibility in its capacity to cope with changing environments. The composition of the gut microbial community of a species can vary seasonally or when the host moves between environments (e.g. fresh and sea water in the case of migratory fish). It can also change with host diet choice, metabolic rate (or demands) and life stage. These changes in gut microbial community composition enable the host to live within different environments, adapt to seasonal changes in diet and maintain performance throughout its entire life history, highlighting the ecological relevance of the gut microbiota. Whilst it is evident that gut microbes can underpin host metabolic plasticity, the causal nature of associations between particular microorganisms and host performance is not always clear unless a manipulative approach has been used. Many studies have focussed on a correlative approach by characterizing microbial community composition, but there is now a need for more experimental studies in both wild and laboratory-based environments, to reveal the true role of gut microbiota in influencing the functioning of their hosts, including its capacity to tolerate environmental change. We highlight areas where these would be particularly fruitful in the context of ecological energetics.


Asunto(s)
Microbioma Gastrointestinal , Animales , Dieta , Peces , Simbiosis
9.
Parasit Vectors ; 13(1): 252, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32410645

RESUMEN

BACKGROUND: Trypanosoma cruzi, the causative agent of Chagas disease, and T. rangeli are kinetoplastid parasites endemic to Latin America. Although closely related to T. cruzi and capable of infecting humans, T. rangeli is non-pathogenic. Both parasite species are transmitted by triatomine bugs, and the presence of T. rangeli constitutes a confounding factor in the study of Chagas disease prevalence and transmission dynamics. Trypanosoma cruzi possesses high molecular heterogeneity: seven discrete typing units (DTUs) are currently recognized. In Ecuador, T. cruzi TcI and T. rangeli KP1(-) predominate, while other genetic lineages are seldom reported. METHODS: Infection by T. cruzi and/or T. rangeli in different developmental stages of triatomine bugs from two communities of southern Ecuador was evaluated via polymerase chain reaction product size polymorphism of kinetoplast minicircle sequences and the non-transcribed spacer region of the mini-exon gene (n = 48). Forty-three mini-exon amplicons were also deep sequenced to analyze single-nucleotide polymorphisms within single and mixed infections. Mini-exon products from ten monoclonal reference strains were included as controls. RESULTS: Trypanosoma cruzi genetic richness and diversity was not significantly greater in adult vectors than in nymphal stages III and V. In contrast, instar V individuals showed significantly higher T. rangeli richness when compared with other developmental stages. Among infected triatomines, deep sequencing revealed one T. rangeli infection (3%), 8 T. cruzi infections (23.5%) and 25 T. cruzi + T. rangeli co-infections (73.5%), suggesting that T. rangeli prevalence has been largely underestimated in the region. Furthermore, deep sequencing detected TcIV sequences in nine samples; this DTU had not previously been reported in Loja Province. CONCLUSIONS: Our data indicate that deep sequencing allows for better parasite identification/typing than amplicon size analysis alone for mixed infections containing both T. cruzi and T. rangeli, or when multiple T. cruzi DTUs are present. Additionally, our analysis showed extensive overlap among the parasite populations present in the two studied localities (c.28 km apart), suggesting active parasite dispersal over the study area. Our results highlight the value of amplicon sequencing methodologies to clarify the population dynamics of kinetoplastid parasites in endemic regions and inform control campaigns in southern Ecuador.


Asunto(s)
ADN Protozoario/genética , Exones/genética , Variación Genética , Trypanosoma cruzi/genética , Trypanosoma rangeli/genética , Animales , Ecuador/epidemiología , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Insectos Vectores/parasitología , Masculino , Filogenia , Triatominae/parasitología
10.
Nat Commun ; 10(1): 3972, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31481692

RESUMEN

Genetic exchange enables parasites to rapidly transform disease phenotypes and exploit new host populations. Trypanosoma cruzi, the parasitic agent of Chagas disease and a public health concern throughout Latin America, has for decades been presumed to exchange genetic material rarely and without classic meiotic sex. We present compelling evidence from 45 genomes sequenced from southern Ecuador that T. cruzi in fact maintains truly sexual, panmictic groups that can occur alongside others that remain highly clonal after past hybridization events. These groups with divergent reproductive strategies appear genetically isolated despite possible co-occurrence in vectors and hosts. We propose biological explanations for the fine-scale disconnectivity we observe and discuss the epidemiological consequences of flexible reproductive modes. Our study reinvigorates the hunt for the site of genetic exchange in the T. cruzi life cycle, provides tools to define the genetic determinants of parasite virulence, and reforms longstanding theory on clonality in trypanosomatid parasites.


Asunto(s)
Genoma de Protozoos , Meiosis , Trypanosoma cruzi/genética , Animales , Enfermedad de Chagas/parasitología , Quirópteros/parasitología , Ecuador , Variación Genética , Genética de Población , Recombinación Genética , Reproducción/genética , Roedores/parasitología , Análisis de Secuencia de ADN , Triatominae/parasitología
11.
Lancet Infect Dis ; 19(5): e149-e161, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30799251

RESUMEN

In the past 5-10 years, Venezuela has faced a severe economic crisis, precipitated by political instability and declining oil revenue. Public health provision has been affected particularly. In this Review, we assess the impact of Venezuela's health-care crisis on vector-borne diseases, and the spillover into neighbouring countries. Between 2000 and 2015, Venezuela witnessed a 359% increase in malaria cases, followed by a 71% increase in 2017 (411 586 cases) compared with 2016 (240 613). Neighbouring countries, such as Brazil, have reported an escalating trend of imported malaria cases from Venezuela, from 1538 in 2014 to 3129 in 2017. In Venezuela, active Chagas disease transmission has been reported, with seroprevalence in children (<10 years), estimated to be as high as 12·5% in one community tested (n=64). Dengue incidence increased by more than four times between 1990 and 2016. The estimated incidence of chikungunya during its epidemic peak is 6975 cases per 100 000 people and that of Zika virus is 2057 cases per 100 000 people. The re-emergence of many vector-borne diseases represents a public health crisis in Venezuela and has the possibility of severely undermining regional disease elimination efforts. National, regional, and global authorities must take action to address these worsening epidemics and prevent their expansion beyond Venezuelan borders.


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/transmisión , Epidemias , Enfermedades Transmitidas por Vectores/epidemiología , Enfermedades Transmitidas por Vectores/transmisión , Animales , Control de Enfermedades Transmisibles , Enfermedades Transmisibles Emergentes/prevención & control , Epidemias/prevención & control , Epidemias/estadística & datos numéricos , Geografía Médica , Humanos , Incidencia , Enfermedades Transmitidas por Vectores/prevención & control , Venezuela/epidemiología
12.
Front Microbiol ; 9: 3009, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30581425

RESUMEN

Environmental DNA (eDNA) metabarcoding is a relatively new monitoring tool featuring in an increasing number of applications such as the facilitation of the accurate and cost effective detection of species in environmental samples. eDNA monitoring is likely to have a major impact on the ability of salmonid aquaculture industry producers and their regulators to detect the presence and abundance of pathogens and other biological threats in the surrounding environment. However, for eDNA metabarcoding to develop into a useful bio-monitoring tool it is necessary to (a) validate that sequence datasets derived from amplification of metabarcoding markers reflect the true species' identity, (b) test the sensitivity under different abundance levels and environmental noise and (c) establish a low-cost sequencing method to enable the bulk processing of field samples. In this study, we employed an elaborate experimental design whereby different combinations of five biological agents were crossed at three abundance levels and exposed to sterile pre-filtered and unfiltered seawater, prior to coarse filtering and then eDNA ultrafiltration of the resultant material. We then benchmarked the low-cost, scalable, Ion Torrent sequencing method against the current gold-standard Illumina platform for eDNA surveys in aquaculture. Based on amplicon-seq of the 18S SSU rDNA v9 region, we were able to identify two parasites (Lepeophtheirus salmonis and Paramoeba perurans) to species level, whereas the microalgae species Prymnesium parvum, Pseudo-nitzschia seriata, and P. delicatissima could be assigned correctly only to the genus level. Illumina and Ion Torrent provided near identical results in terms of community composition in our samples, whereas Ion Torrent was more sensitive in detecting species richness when the medium was unfiltered seawater. Both methods were able to reflect the difference in relative abundance between treatments in 4 out of 5 species when samples were exposed to the unfiltered seawater, despite the significant amount of background noise from both bacteria and eukaryotes. Our findings indicate that eDNA metabarcoding offers significant potential in the monitoring of species harmful to aquaculture and for this purpose, the low-cost Ion Torrent sequencing is as accurate as Illumina in determining differences in their relative abundance between samples.

13.
PLoS One ; 12(11): e0188412, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29176770

RESUMEN

The aim of this study was to reevaluate the ecology of an area in the Atlantic Forest, southeast Brazil, where Chagas disease (CD) has been found to occur. In a previous study, immediately after the occurrence of a CD case, we did not observe any sylvatic small mammals or dogs with Trypanosoma cruzi cruzi infections, but Triatoma vitticeps presented high T. c. cruzi infection rates. In this study, we investigated bats together with non-volant mammals, dogs, and triatomines to explore other possible T. c. cruzi reservoirs/hosts in the area. Seventy-three non-volant mammals and 186 bats were captured at three sites within the Guarapari municipality, Espírito Santo state. Rio da Prata and Amarelos sites exhibited greater richness in terms of non-volant mammals and bats species, respectively. The marsupial Metachirus nudicaudatus, the rodent Trinomys paratus, and the bats Artibeus lituratus and Carollia perspicillata were the most frequently captured species. As determined by positive hemocultures, only two non-volant mammals were found to be infected by Trypanosoma species: Monodelphis americana, which was infected by T. cascavelli, T. dionisii and Trypanosoma sp., and Callithrix geoffroyi, which was infected by T. minasense. Bats presented T. c. cruzi TcI and TcIII/V, T. c. marinkellei, T. dionisii, T. rangeli B and D, and Trypanosoma sp. infections. Seven dogs were infected with T. cruzi based only on serological exams. The triatomines T. vitticeps and Panstrongylus geniculatus were found to be infected by trypanosomes via microscopy. According to molecular characterization, T. vitticeps specimens were infected with T. c. cruzi TcI, TcII, TcIII/V, and TcIV, T. c. marinkellei and T. dionisii. We observed high trypanosome diversity in a small and fragmented region of the Atlantic Forest. This diversity was primarily maintained by bats and T. vitticeps. Our findings show that the host specificity of the Trypanosoma genus should be thoroughly reviewed. In addition, our data show that CD cases can occur without an enzootic cycle near residential areas.


Asunto(s)
Biodiversidad , Quirópteros/parasitología , Triatoma/parasitología , Trypanosoma/fisiología , Animales , Secuencia de Bases , Brasil/epidemiología , Perros , Geografía , Secuenciación de Nucleótidos de Alto Rendimiento , Intestinos/parasitología , Filogenia , ARN Ribosómico/genética , Bosque Lluvioso , Especificidad de la Especie , Tripanosomiasis/epidemiología
14.
Am J Trop Med Hyg ; 97(5): 1489-1497, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29016290

RESUMEN

Leishmania tropica is the causative agent of cutaneous leishmaniasis in Pakistan. Here, intraspecific diversity of L. tropica from northern Pakistan was investigated using multilocus microsatellite typing. Fourteen polymorphic microsatellite markers were typed in 34 recently collected L. tropica isolates from Pakistan along with 158 archival strains of diverse Afro-Eurasian origins. Previously published profiles for 145 strains of L. tropica originating from different regions of Africa, Central Asia, Iran, and Middle East were included for comparison. Six consistently well-supported genetic groups were resolved: 1) Asia, 2) Morroco A, 3) Namibia and Kenya A, 4) Kenya B/Tunisia and Galilee, 5) Morocco B, and 6) Middle East. Strains from northern Pakistan were assigned to Asian cluster except for three that were placed in a geographically distant genetic group; Morocco A. Lesion variability among these Pakistani strains was not associated with specific L. tropica genetic profile. Pakistani strains showed little genetic differentiation from strains of Iraq, Afghanistan, and Syria (FST = 0.00-0.06); displayed evidence of modest genetic flow with India (FST = 0.14). Furthermore, genetic structuring within these isolates was not geographically defined. Pak-Afghan cluster was in significant linkage disequilibrium (IA = 1.43), had low genetic diversity, and displayed comparatively higher heterozygosity (FIS = -0.62). Patterns of genetic diversity observed suggest dominance of a minimally diverse clonal lineage within northern Pakistan. This is surprising as a wide clinical spectrum was observed in patients, suggesting the importance of host and other factors. Further genotyping studies of L. tropica isolates displaying different clinical phenotypes are required to validate this potentially important observation.


Asunto(s)
Variación Genética , Genoma de Protozoos , Leishmania tropica/genética , Leishmaniasis Cutánea/parasitología , ADN Protozoario/genética , Técnicas de Genotipaje , Humanos , Leishmania tropica/aislamiento & purificación , Leishmaniasis Cutánea/epidemiología , Desequilibrio de Ligamiento , Repeticiones de Microsatélite , Familia de Multigenes , Pakistán/epidemiología , Filogeografía
15.
PLoS Negl Trop Dis ; 11(7): e0005790, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28727769

RESUMEN

BACKGROUND: Bats are a highly successful, globally dispersed order of mammals that occupy a wide array of ecological niches. They are also intensely parasitized and implicated in multiple viral, bacterial and parasitic zoonoses. Trypanosomes are thought to be especially abundant and diverse in bats. In this study, we used 18S ribosomal RNA metabarcoding to probe bat trypanosome diversity in unprecedented detail. METHODOLOGY/PRINCIPAL FINDINGS: Total DNA was extracted from the blood of 90 bat individuals (17 species) captured along Atlantic Forest fragments of Espírito Santo state, southeast Brazil. 18S ribosomal RNA was amplified by standard and/or nested PCR, then deep sequenced to recover and identify Operational Taxonomic Units (OTUs) for phylogenetic analysis. Blood samples from 34 bat individuals (13 species) tested positive for infection by 18S rRNA amplification. Amplicon sequences clustered to 14 OTUs, of which five were identified as Trypanosoma cruzi I, T. cruzi III/V, Trypanosoma cruzi marinkellei, Trypanosoma rangeli, and Trypanosoma dionisii, and seven were identified as novel genotypes monophyletic to basal T. cruzi clade types of the New World. Another OTU was identified as a trypanosome like those found in reptiles. Surprisingly, the remaining OTU was identified as Bodo saltans-closest non-parasitic relative of the trypanosomatid order. While three blood samples featured just one OTU (T. dionisii), all others resolved as mixed infections of up to eight OTUs. CONCLUSIONS/SIGNIFICANCE: This study demonstrates the utility of next-generation barcoding methods to screen parasite diversity in mammalian reservoir hosts. We exposed high rates of local bat parasitism by multiple trypanosome species, some known to cause fatal human disease, others non-pathogenic, novel or yet little understood. Our results highlight bats as a long-standing nexus among host-parasite interactions of multiple niches, sustained in part by opportunistic and incidental infections of consequence to evolutionary theory as much as to public health.


Asunto(s)
Quirópteros/parasitología , Código de Barras del ADN Taxonómico , ADN Ribosómico/genética , Variación Genética , ARN Ribosómico 18S/genética , Trypanosoma/clasificación , Trypanosoma/genética , Animales , Brasil , Análisis por Conglomerados , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Trypanosoma/aislamiento & purificación
16.
PLoS Negl Trop Dis ; 11(7): e0005710, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28723901

RESUMEN

BACKGROUND: Rhodnius ecuadoriensis is the main triatomine vector of Chagas disease, American trypanosomiasis, in Southern Ecuador and Northern Peru. Genomic approaches and next generation sequencing technologies have become powerful tools for investigating population diversity and structure which is a key consideration for vector control. Here we assess the effectiveness of three different 2b restriction site-associated DNA (2b-RAD) genotyping strategies in R. ecuadoriensis to provide sufficient genomic resolution to tease apart microevolutionary processes and undertake some pilot population genomic analyses. METHODOLOGY/PRINCIPAL FINDINGS: The 2b-RAD protocol was carried out in-house at a non-specialized laboratory using 20 R. ecuadoriensis adults collected from the central coast and southern Andean region of Ecuador, from June 2006 to July 2013. 2b-RAD sequencing data was performed on an Illumina MiSeq instrument and analyzed with the STACKS de novo pipeline for loci assembly and Single Nucleotide Polymorphism (SNP) discovery. Preliminary population genomic analyses (global AMOVA and Bayesian clustering) were implemented. Our results showed that the 2b-RAD genotyping protocol is effective for R. ecuadoriensis and likely for other triatomine species. However, only BcgI and CspCI restriction enzymes provided a number of markers suitable for population genomic analysis at the read depth we generated. Our preliminary genomic analyses detected a signal of genetic structuring across the study area. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that 2b-RAD genotyping is both a cost effective and methodologically simple approach for generating high resolution genomic data for Chagas disease vectors with the power to distinguish between different vector populations at epidemiologically relevant scales. As such, 2b-RAD represents a powerful tool in the hands of medical entomologists with limited access to specialized molecular biological equipment.


Asunto(s)
Genotipo , Técnicas de Genotipaje/métodos , Insectos Vectores/clasificación , Insectos Vectores/genética , Rhodnius/clasificación , Rhodnius/genética , Animales , Análisis Costo-Beneficio , Ecuador , Genética de Población , Técnicas de Genotipaje/economía
17.
Parasitology ; 144(7): 884-898, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28179034

RESUMEN

Active Trypanosoma cruzi transmission persists in the Gran Chaco region, which is considered hyperendemic for Chagas disease. Understanding domestic and sylvatic transmission cycles and therefore the relationship between vectors and mammalian hosts is crucial to designing and implementing improved effective control strategies. Here we describe the species of triatomine vectors and the sylvatic mammal reservoirs of T. cruzi, in different localities of the Paraguayan and Bolivian Chaco. We identify the T. cruzi genotypes discrete typing units (DTUs) and provide a map of their geographical distribution. A total of 1044 triatomines and 138 sylvatic mammals were captured. Five per cent of the triatomines were microscopically positive for T. cruzi (55 Triatoma infestans from Paraguay and one sylvatic Triatoma guasayana from Bolivia) and 17 animals (12·3%) comprising eight of 28 (28·5%) Dasypus novemcinctus, four of 27 (14·8%) Euphractus sexcinctus, three of 64 (4·7%) Chaetophractus spp. and two of 14 (14·3%) Didelphis albiventris. The most common DTU infecting domestic triatomine bugs was TcV (64%), followed by TcVI (28%), TcII (6·5%) and TcIII (1·5%). TcIII was overwhelmingly associated with armadillo species. We confirm the primary role of T. infestans in domestic transmission, armadillo species as the principal sylvatic hosts of TcIII, and consider the potential risk of TcIII as an agent of Chagas disease in the Chaco.


Asunto(s)
Armadillos , Enfermedad de Chagas/veterinaria , Didelphis , Triatominae/fisiología , Triatominae/parasitología , Trypanosoma cruzi/fisiología , Animales , Biota , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/parasitología , Femenino , Genotipo , Masculino , Paraguay/epidemiología , Triatominae/clasificación , Trypanosoma cruzi/genética
18.
Trends Parasitol ; 33(4): 264-275, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27863902

RESUMEN

Substantial heterogeneity exists in the dispersal, distribution and transmission of parasitic species. Understanding and predicting how such features are governed by the ecological variation of landscape they inhabit is the central goal of spatial epidemiology. Genetic data can further inform functional connectivity among parasite, host and vector populations in a landscape. Gene flow correlates with the spread of epidemiologically relevant phenotypes among parasite and vector populations (e.g., virulence, drug and pesticide resistance), as well as invasion and re-invasion risk where parasite transmission is absent due to current or past intervention measures. However, the formal integration of spatial and genetic data ('landscape genetics') is scarcely ever applied to parasites. Here, we discuss the specific challenges and practical prospects for the use of landscape genetics and genomics to understand the biology and control of parasitic disease and present a practical framework for doing so.


Asunto(s)
Genómica , Interacciones Huésped-Parásitos , Enfermedades Parasitarias/prevención & control , Enfermedades Parasitarias/parasitología , Animales , Interacciones Huésped-Parásitos/genética , Humanos , Enfermedades Parasitarias/epidemiología , Enfermedades Parasitarias/transmisión , Fenotipo
19.
Emerg Infect Dis ; 22(8): 1452-5, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27434772

RESUMEN

We report the characterization of Trypanosoma cruzi of southern South American origin among humans, domestic vectors, and peridomestic hosts in Colombia using high-resolution nuclear and mitochondrial genotyping. Expanding our understanding of the geographic range of lineage TcVI, which is associated with severe Chagas disease, will help clarify risk of human infection for improved disease control.


Asunto(s)
Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/parasitología , Trypanosoma cruzi/genética , Humanos , Mutación , Filogenia , América del Sur/epidemiología
20.
ISME J ; 10(5): 1280-4, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26517698

RESUMEN

Although understood in many vertebrate systems, the natural diversity of host-associated microbiota has been little studied in teleosts. For migratory fishes, successful exploitation of multiple habitats may affect and be affected by the composition of the intestinal microbiome. We collected 96 Salmo salar from across the Atlantic encompassing both freshwater and marine phases. Dramatic differences between environmental and gut bacterial communities were observed. Furthermore, community composition was not significantly impacted by geography. Instead life-cycle stage strongly defined both the diversity and identity of microbial assemblages in the gut, with evidence for community destabilisation in migratory phases. Mycoplasmataceae phylotypes were abundantly recovered in all life-cycle stages. Patterns of Mycoplasmataceae phylotype recruitment to the intestinal microbial community among sites and life-cycle stages support a dual role for deterministic and stochastic processes in defining the composition of the S. salar gut microbiome.


Asunto(s)
Microbioma Gastrointestinal , Intestinos/microbiología , Salmo salar/microbiología , Animales , Biodiversidad , Biología Computacional , Ambiente , Agua Dulce , Geografía , Estadios del Ciclo de Vida , Microbiota
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...