Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 15(5): e0233439, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32469934

RESUMEN

In epithelial cells, the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-regulated Cl- channel, plays a key role in water and electrolytes secretion. A dysfunctional CFTR leads to the dehydration of the external environment of the cells and to the production of viscous mucus in the airways of cystic fibrosis patients. Here, we applied the quadriwave lateral shearing interferometry (QWLSI), a quantitative phase imaging technique based on the measurement of the light wave shift when passing through a living sample, to study water transport regulation in human airway epithelial CFBE and CHO cells expressing wild-type, G551D- and F508del-CFTR. We were able to detect phase variations during osmotic challenges and confirmed that cellular volume changes reflecting water fluxes can be detected with QWLSI. Forskolin stimulation activated a phase increase in all CFBE and CHO cell types. This phase variation was due to cellular volume decrease and intracellular refractive index increase and was completely blocked by mercury, suggesting an activation of a cAMP-dependent water efflux mediated by an endogenous aquaporin (AQP). AQP3 mRNAs, not AQP1, AQP4 and AQP5 mRNAs, were detected by RT-PCR in CFBE cells. Readdressing the F508del-CFTR protein to the cell surface with VX-809 increased the detected water efflux in CHO but not in CFBE cells. However, VX-770, a potentiator of CFTR function, failed to further increase the water flux in either G551D-CFTR or VX-809-corrected F508del-CFTR expressing cells. Our results show that QWLSI could be a suitable technique to study water transport in living cells. We identified a CFTR and cAMP-dependent, mercury-sensitive water transport in airway epithelial and CHO cells that might be due to AQP3. This water transport appears to be affected when CFTR is mutated and independent of the chloride channel function of CFTR.


Asunto(s)
Acuaporina 3/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Mucosa Respiratoria/metabolismo , Agua/metabolismo , Aminofenoles/farmacología , Animales , Acuaporina 3/genética , Transporte Biológico Activo/efectos de los fármacos , Fenómenos Biofísicos , Bronquios/citología , Bronquios/metabolismo , Células CHO , Línea Celular , Agonistas de los Canales de Cloruro/farmacología , Colforsina/farmacología , Cricetulus , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células Epiteliales/metabolismo , Humanos , Microscopía de Interferencia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ósmosis , Quinolonas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mucosa Respiratoria/citología
2.
Sci Rep ; 9(1): 15642, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666636

RESUMEN

Cav3 / T-type Ca2+ channels are dynamically regulated by intracellular Ca2+ ions, which inhibit Cav3 availability. Here, we demonstrate that this inhibition becomes irreversible in the presence of non-hydrolysable ATP analogs, resulting in a strong hyperpolarizing shift in the steady-state inactivation of the residual Cav3 current. Importantly, the effect of these ATP analogs was prevented in the presence of intracellular BAPTA. Additional findings obtained using intracellular dialysis of inorganic phosphate and alkaline phosphatase or NaN3 treatment further support the involvement of a phosphorylation mechanism. Contrasting with Cav1 and Cav2 Ca2+ channels, the Ca2+-dependent modulation of Cav3 channels appears to be independent of calmodulin, calcineurin and endocytic pathways. Similar findings were obtained for the native T-type Ca2+ current recorded in rat thalamic neurons of the central medial nucleus. Overall, our data reveal a new Ca2+ sensitive phosphorylation-dependent mechanism regulating Cav3 channels, with potentially important physiological implications for the multiple cell functions controlled by T-type Ca2+ channels.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Calcio/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Canales de Calcio Tipo T/genética , Femenino , Masculino , Fosfatos/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley , Núcleos Talámicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...