Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 33(19): 4276-4284.e4, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37729911

RESUMEN

Plasma membrane rupture can result in catastrophic cell death. The skeletal muscle fiber plasma membrane, the sarcolemma, provides an extreme example of a membrane subject to mechanical stress since these cells specifically evolved to generate contraction and movement. A quantitative model correlating ultrastructural remodeling of surface architecture with tissue changes in vivo is required to understand how membrane domains contribute to the shape changes associated with tissue deformation in whole animals. We and others have shown that loss of caveolae, small invaginations of the plasma membrane particularly prevalent in the muscle sarcolemma, renders the plasma membrane more susceptible to rupture during stretch.1,2,3 While it is thought that caveolae are able to flatten and be absorbed into the bulk membrane to buffer local membrane expansion, a direct demonstration of this model in vivo has been unachievable since it would require measurement of caveolae at the nanoscale combined with detailed whole-animal morphometrics under conditions of perturbation. Here, we describe the development and application of the "active trapping model" where embryonic zebrafish are immobilized in a curved state that mimics natural body axis curvature during an escape response. The model is amenable to multiscale, multimodal imaging including high-resolution whole-animal three-dimensional quantitative electron microscopy. Using the active trapping model, we demonstrate the essential role of caveolae in maintaining sarcolemmal integrity and quantify the specific contribution of caveolar-derived membrane to surface expansion. We show that caveolae directly contribute to an increase in plasma membrane surface area under physiologically relevant membrane deformation conditions.


Asunto(s)
Caveolas , Pez Cebra , Animales , Membrana Celular , Caveolas/metabolismo , Fibras Musculares Esqueléticas , Microscopía Electrónica
2.
Dev Cell ; 58(5): 376-397.e4, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36858041

RESUMEN

Caveolae have been linked to many biological functions, but their precise roles are unclear. Using quantitative whole-cell proteomics of genome-edited cells, we show that the oxidative stress response is the major pathway dysregulated in cells lacking the key caveola structural protein, CAVIN1. CAVIN1 deletion compromised sensitivity to oxidative stress in cultured cells and in animals. Wound-induced accumulation of reactive oxygen species and apoptosis were suppressed in Cavin1-null zebrafish, negatively affecting regeneration. Oxidative stress triggered lipid peroxidation and induced caveolar disassembly. The resulting release of CAVIN1 from caveolae allowed direct interaction between CAVIN1 and NRF2, a key regulator of the antioxidant response, facilitating NRF2 degradation. CAVIN1-null cells with impaired negative regulation of NRF2 showed resistance to lipid-peroxidation-induced ferroptosis. Thus, caveolae, via lipid peroxidation and CAVIN1 release, maintain cellular susceptibility to oxidative-stress-induced cell death, demonstrating a crucial role for this organelle in cellular homeostasis and wound response.


Asunto(s)
Caveolas , Factor 2 Relacionado con NF-E2 , Animales , Caveolas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Pez Cebra/metabolismo , Peroxidación de Lípido , Proteínas de Unión al ARN/metabolismo , Estrés Oxidativo
3.
Bio Protoc ; 11(19): e4178, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34722825

RESUMEN

Identification of protein interaction networks is key for understanding intricate biological processes, but mapping such networks is challenging with conventional biochemical methods, especially for weak or transient interactions. Proximity-dependent biotin labelling (BioID) using promiscuous biotin ligases and mass spectrometry (MS)-based proteomics has emerged in the past decade as a powerful method for probing local proteomes and protein interactors. Here, we describe the application of an engineered biotin ligase, TurboID, for proteomic mapping and interactor screening in vivo in zebrafish. We generated novel transgenic zebrafish lines that express TurboID fused to a conditionally stabilised GFP-binding nanobody, dGBP, which targets TurboID to the GFP-tagged proteins of interest. The TurboID-dGBP zebrafish lines enable proximity-dependent biotin labelling in live zebrafish simply through outcrossing with existing GFP-tagged lines. Here, we outline a detailed protocol of the BLITZ method (Biotin Labelling In Tagged Zebrafish) for utilising TurboID-dGBP fish lines to map local proteomes and screen novel interactors. Graphic abstract: Schematic overview of the BLITZ method. TurboID-dGBP fish are crossed with GFP-tagged lines to obtain embryos co-expressing TurboID-dGBP (indicated by mKate2) and the GFP-POI (protein of interest). Embryos expressing only TurboID are used as a negative control. Embryos (2 to 7 dpf) are incubated overnight with a 500 µM biotin-supplemented embryo medium. This biotin incubation step allows TurboID to catalyse proximity-dependent biotinylation in live zebrafish embryos. After biotin incubation, embryos are solubilised in lysis buffer, and free biotin is removed using a PD-10 desalting column. The biotinylated proteins are captured by streptavidin affinity purification, and captured proteins are analysed by MS sequencing.

4.
J Cell Biol ; 220(12)2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34633413

RESUMEN

The cavin proteins are essential for caveola biogenesis and function. Here, we identify a role for the muscle-specific component, Cavin4, in skeletal muscle T-tubule development by analyzing two vertebrate systems, mouse and zebrafish. In both models, Cavin4 localized to T-tubules, and loss of Cavin4 resulted in aberrant T-tubule maturation. In zebrafish, which possess duplicated cavin4 paralogs, Cavin4b was shown to directly interact with the T-tubule-associated BAR domain protein Bin1. Loss of both Cavin4a and Cavin4b caused aberrant accumulation of interconnected caveolae within the T-tubules, a fragmented T-tubule network enriched in Caveolin-3, and an impaired Ca2+ response upon mechanical stimulation. We propose a role for Cavin4 in remodeling the T-tubule membrane early in development by recycling caveolar components from the T-tubule to the sarcolemma. This generates a stable T-tubule domain lacking caveolae that is essential for T-tubule function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sarcolema/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Caveolas/metabolismo , Línea Celular , Embrión no Mamífero/metabolismo , Imagenología Tridimensional , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/ultraestructura , Unión Proteica , Sarcolema/ultraestructura , Pez Cebra/embriología
5.
Sci Adv ; 7(44): eabi7166, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34705503

RESUMEN

Muscle contraction depends on tightly regulated Ca2+ release. Aberrant Ca2+ leak through ryanodine receptor 1 (RyR1) on the sarcoplasmic reticulum (SR) membrane can lead to heatstroke and malignant hyperthermia (MH) susceptibility, as well as severe myopathy. However, the mechanism by which Ca2+ leak drives these pathologies is unknown. Here, we investigate the effects of four mouse genotypes with increasingly severe RyR1 leak in skeletal muscle fibers. We find that RyR1 Ca2+ leak initiates a cascade of events that cause precise redistribution of Ca2+ among the SR, cytoplasm, and mitochondria through altering the Ca2+ permeability of the transverse tubular system membrane. This redistribution of Ca2+ allows mice with moderate RyR1 leak to maintain normal function; however, severe RyR1 leak with RYR1 mutations reduces the capacity to generate force. Our results reveal the mechanism underlying force preservation, increased ATP metabolism, and susceptibility to MH in individuals with gain-of-function RYR1 mutations.

6.
Elife ; 102021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34142659

RESUMEN

Caveolae-associated protein 3 (cavin3) is inactivated in most cancers. We characterized how cavin3 affects the cellular proteome using genome-edited cells together with label-free quantitative proteomics. These studies revealed a prominent role for cavin3 in DNA repair, with BRCA1 and BRCA1 A-complex components being downregulated on cavin3 deletion. Cellular and cell-free expression assays revealed a direct interaction between BRCA1 and cavin3 that occurs when cavin3 is released from caveolae that are disassembled in response to UV and mechanical stress. Overexpression and RNAi-depletion revealed that cavin3 sensitized various cancer cells to UV-induced apoptosis. Supporting a role in DNA repair, cavin3-deficient cells were sensitive to PARP inhibition, where concomitant depletion of 53BP1 restored BRCA1-dependent sensitivity to PARP inhibition. We conclude that cavin3 functions together with BRCA1 in multiple cancer-related pathways. The loss of cavin3 function may provide tumor cell survival by attenuating apoptotic sensitivity and hindering DNA repair under chronic stress conditions.


When cells become cancerous they often stop making certain proteins. This includes a protein known as cavin3 which resides in bulb-shaped pits of the membrane that surrounds the cell called caveolae. These structures work like stress detectors, picking up changes in the membrane and releasing proteins, such as cavin3, into the cell's interior. Past studies suggest that cavin3 might interact with a protein called BRCA1 that suppresses the formation of tumors. Cells with mutations in the gene for BRCA1 struggle to fix damage in their DNA, and have to rely on other repair proteins, such as PARPs (short for poly (ADP-ribose) polymerases). Blocking PARP proteins with drugs can kill cancer cells with problems in their BRCA1 proteins. However, it was unclear what role cavin3 plays in this mechanism. To investigate this, McMahon et al. exposed cells grown in the laboratory to DNA-damaging UV light to stimulate the release of cavin3 from caveolae. This revealed that cavin3 interacts with BRCA1 when cells are under stress, and helps stabilize the protein so it can perform DNA repairs. Cells without cavin3 showed decreased levels of the BRCA1 protein, but compensated for the loss of BRCA1 by increasing the levels of their PARP proteins. These cells also had increased DNA damage following treatment with drugs that block PARPs, similar to cancer cells carrying mutations in the gene for BRCA1. These findings suggest that cavin3 helps BRCA1 to suppress the formation of tumors, and therefore should be considered when developing new anti-cancer treatments.


Asunto(s)
Proteína BRCA1/metabolismo , Caveolas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Estrés Fisiológico/genética , Apoptosis/genética , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteoma/genética , Proteómica
7.
Elife ; 102021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33591275

RESUMEN

Protein interaction networks are crucial for complex cellular processes. However, the elucidation of protein interactions occurring within highly specialised cells and tissues is challenging. Here, we describe the development, and application, of a new method for proximity-dependent biotin labelling in whole zebrafish. Using a conditionally stabilised GFP-binding nanobody to target a biotin ligase to GFP-labelled proteins of interest, we show tissue-specific proteomic profiling using existing GFP-tagged transgenic zebrafish lines. We demonstrate the applicability of this approach, termed BLITZ (Biotin Labelling In Tagged Zebrafish), in diverse cell types such as neurons and vascular endothelial cells. We applied this methodology to identify interactors of caveolar coat protein, cavins, in skeletal muscle. Using this system, we defined specific interaction networks within in vivo muscle cells for the closely related but functionally distinct Cavin4 and Cavin1 proteins.


Asunto(s)
Biotina/farmacología , Proteómica/métodos , Coloración y Etiquetado/métodos , Animales , Animales Modificados Genéticamente , Biotinilación , Caveolinas/metabolismo , Células Endoteliales/metabolismo , Proteínas Fluorescentes Verdes , Proteínas de la Membrana/metabolismo , Músculo Esquelético/metabolismo , Nanopartículas , Neuronas/metabolismo , Mapeo de Interacción de Proteínas , Pez Cebra
8.
Proc Natl Acad Sci U S A ; 117(48): 30476-30487, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33214152

RESUMEN

None of the current superresolution microscopy techniques can reliably image the changes in endogenous protein nanoclustering dynamics associated with specific conformations in live cells. Single-domain nanobodies have been invaluable tools to isolate defined conformational states of proteins, and we reasoned that expressing these nanobodies coupled to single-molecule imaging-amenable tags could allow superresolution analysis of endogenous proteins in discrete conformational states. Here, we used anti-GFP nanobodies tagged with photoconvertible mEos expressed as intrabodies, as a proof-of-concept to perform single-particle tracking on a range of GFP proteins expressed in live cells, neurons, and small organisms. We next expressed highly specialized nanobodies that target conformation-specific endogenous ß2-adrenoreceptor (ß2-AR) in neurosecretory cells, unveiling real-time mobility behaviors of activated and inactivated endogenous conformers during agonist treatment in living cells. We showed that activated ß2-AR (Nb80) is highly immobile and organized in nanoclusters. The Gαs-GPCR complex detected with Nb37 displayed higher mobility with surprisingly similar nanoclustering dynamics to that of Nb80. Activated conformers are highly sensitive to dynamin inhibition, suggesting selective targeting for endocytosis. Inactivated ß2-AR (Nb60) molecules are also largely immobile but relatively less sensitive to endocytic blockade. Expression of single-domain nanobodies therefore provides a unique opportunity to capture highly transient changes in the dynamic nanoscale organization of endogenous proteins.


Asunto(s)
Modelos Moleculares , Conformación Proteica , Receptores Adrenérgicos beta 2/química , Imagen Individual de Molécula , Anticuerpos de Dominio Único/química , Animales , Línea Celular , Endocitosis , Técnica del Anticuerpo Fluorescente , Expresión Génica , Genes Reporteros , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ratones , Unión Proteica , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Proteínas Recombinantes de Fusión , Imagen Individual de Molécula/métodos , Anticuerpos de Dominio Único/metabolismo , Pez Cebra
9.
Nat Commun ; 11(1): 3711, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32709891

RESUMEN

The skeletal muscle T-tubule is a specialized membrane domain essential for coordinated muscle contraction. However, in the absence of genetically tractable systems the mechanisms involved in T-tubule formation are unknown. Here, we use the optically transparent and genetically tractable zebrafish system to probe T-tubule development in vivo. By combining live imaging of transgenic markers with three-dimensional electron microscopy, we derive a four-dimensional quantitative model for T-tubule formation. To elucidate the mechanisms involved in T-tubule formation in vivo, we develop a quantitative screen for proteins that associate with and modulate early T-tubule formation, including an overexpression screen of the entire zebrafish Rab protein family. We propose an endocytic capture model involving firstly, formation of dynamic endocytic tubules at transient nucleation sites on the sarcolemma, secondly, stabilization by myofibrils/sarcoplasmic reticulum and finally, delivery of membrane from the recycling endosome and Golgi complex.


Asunto(s)
Contracción Muscular/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Sarcolema/fisiología , Sarcolema/ultraestructura , Animales , Canales de Calcio/metabolismo , Canales de Calcio/ultraestructura , Canales de Calcio Tipo L/metabolismo , Proteínas Portadoras/metabolismo , Biología Evolutiva , Aparato de Golgi/metabolismo , Masculino , Microscopía Electrónica , Proteínas Musculares/química , Músculo Esquelético/química , Miofibrillas/metabolismo , Sarcolema/química , Retículo Sarcoplasmático/metabolismo , Pez Cebra
10.
Methods Mol Biol ; 2169: 175-187, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32548829

RESUMEN

The zebrafish is a vertebrate model suited to the exploration of cell biology within a whole organism. Hypotheses in cell mechanics can be tested by using the zebrafish notochord as a manipulable experimental system. Here, the methodologies to prepare, label, and simultaneously induce and image mechanical loading on live zebrafish notochord cells via electrical stimulation are described. This approach investigates membrane mechanics in a live, physiological setting and is thus suited for caveola research where observations within the tissues of an intact organism are increasingly relevant. This chapter also aims to introduce fundamental methodologies for the use of zebrafish in "in vivo cell biology."


Asunto(s)
Membrana Celular/metabolismo , Estimulación Eléctrica/métodos , Microscopía Confocal/métodos , Notocorda/citología , Notocorda/metabolismo , Pez Cebra/metabolismo , Animales , Caveolas/metabolismo , Estimulación Eléctrica/instrumentación , Microscopía Confocal/instrumentación , Estrés Mecánico , Pez Cebra/embriología
11.
EMBO Rep ; 19(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30021837

RESUMEN

Caveolae are plasma membrane invaginations involved in transport, signalling and mechanical membrane sensing in metazoans. Their formation depends upon multiple interactions between membrane-embedded caveolins, lipids and cytosolic cavin proteins. Of the four cavin family members, only cavin1 is strictly required for caveola formation. Here, we demonstrate that an eleven residue (undecad) repeat sequence (UC1) exclusive to cavin1 is essential for caveolar localization and promotes membrane remodelling through binding to phosphatidylserine. In the notochord of mechanically stimulated zebrafish embryos, the UC1 domain is required for caveolar stability and resistance to membrane stress. The number of undecad repeats in the cavin1 UC1 domain varies throughout evolution, and we find that an increased number also correlates with increased caveolar stability. Lastly, we show that the cavin1 UC1 domain induces dramatic remodelling of the plasma membrane when grafted into cavin2 suggesting an important role in membrane sculpting. Overall, our work defines a novel conserved cavin1 modular domain that controls caveolar assembly and stability.


Asunto(s)
Caveolas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Análisis Mutacional de ADN , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células MCF-7 , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Notocorda/metabolismo , Células PC-3 , Proteínas de Unión a Fosfato , Proteínas de Unión al ARN/química , Estrés Mecánico , Pez Cebra , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
12.
Curr Biol ; 27(13): 1968-1981.e7, 2017 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-28648821

RESUMEN

The embryonic notochord is a flexible structure present during development that serves as scaffold for formation of the vertebrate spine. This rod-like organ is thought to have evolved in non-vertebrate chordates to facilitate locomotion by providing a rigid but flexible midline structure against which the axial muscles can contract. This hydrostatic "skeleton" is exposed to a variety of mechanical forces during oscillation of the body. There is evidence that caveolae, submicroscopic cup-shaped plasma membrane pits, can buffer tension in cells that undergo high levels of mechanical stress. Indeed, caveolae are particularly abundant in the embryonic notochord. In this study, we used the CRISPR/Cas9 system to generate a mutant zebrafish line lacking Cavin1b, a coat protein required for caveola formation. Our cavin1b-/- zebrafish line exhibits reduced locomotor capacity and prominent notochord lesions characterized by necrotic, damaged, and membrane-permeable cells. Notochord diameter and body length are reduced, but remarkably, the mutants recover and are homozygous viable. By manipulating mechanical stress using a number of different assays, we show that progression of lesion severity in the mutant notochord is directly dependent on locomotion. We also demonstrate changes in caveola morphology in vivo in response to mechanical stress. Finally, induction of a catastrophic collapse of live cavin1b-/- mutant notochord cells provides the first real-time observation of caveolae mediating cellular mechanoprotection.


Asunto(s)
Caveolas/metabolismo , Notocorda/embriología , Pez Cebra/embriología , Animales , Fenómenos Biomecánicos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Estrés Mecánico , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
13.
Cell Logist ; 7(1): e1301151, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28396820

RESUMEN

The zebrafish is an emerging model for highly sophisticated medium-throughput experiments such as genetic and chemical screens. However, studies of entire protein families within this context are often hampered by poor genetic resources such as clone libraries. Here we describe a complete collection of 76 full-length open reading frame clones for the zebrafish rab protein family. While the mouse genome contains 60 rab genes and the human genome 63, we find that 18 zebrafish rab genes have 2, and in the case of rab38, 3 paralogues. In contrast, we were unable to identify zebrafish orthologues of the mammalian Rab2b, Rab17 or Rab29. We make this resource available through the Addgene repository to facilitate cell biologic approaches using this model.

14.
Bioarchitecture ; 6(1): 22-7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26760312

RESUMEN

Caveolae, small bulb-like pits, are the most abundant surface feature of many vertebrate cell types. The relationship of the structure of caveolae to their function has been a subject of considerable scientific interest in view of the association of caveolar dysfunction with human disease. In a recent study Lo et al. (1) investigated the organization and function of caveolae in skeletal muscle. Using quantitative 3D electron microscopy caveolae were shown to be predominantly organized into multilobed structures which provide a large reservoir of surface-connected membrane underlying the sarcolemma. These structures were preferentially disassembled in response to changes in membrane tension. Perturbation or loss of caveolae in mouse and zebrafish models suggested that caveolae can protect the muscle sarcolemma against damage in response to excessive membrane activity. Flattening of caveolae to release membrane into the bulk plasma membrane in response to increased membrane tension can allow cell shape changes and prevent membrane rupture. In addition, disassembly of caveolae can have widespread effects on lipid-based plasma membrane organization. These findings suggest that the ability of the caveolar membrane system to respond to mechanical forces is a crucial evolutionarily-conserved process which is compromised in disease conditions associated with mutations in key caveolar components.


Asunto(s)
Caveolinas/metabolismo , Mecanotransducción Celular , Proteínas de la Membrana/metabolismo , Actividad Motora/fisiología , Fibras Musculares Esqueléticas/fisiología , Proteínas de Unión al ARN/metabolismo , Estrés Mecánico , Animales
15.
J Cell Biol ; 210(5): 833-49, 2015 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-26323694

RESUMEN

Dysfunction of caveolae is involved in human muscle disease, although the underlying molecular mechanisms remain unclear. In this paper, we have functionally characterized mouse and zebrafish models of caveolae-associated muscle disease. Using electron tomography, we quantitatively defined the unique three-dimensional membrane architecture of the mature muscle surface. Caveolae occupied around 50% of the sarcolemmal area predominantly assembled into multilobed rosettes. These rosettes were preferentially disassembled in response to increased membrane tension. Caveola-deficient cavin-1(-/-) muscle fibers showed a striking loss of sarcolemmal organization, aberrant T-tubule structures, and increased sensitivity to membrane tension, which was rescued by muscle-specific Cavin-1 reexpression. In vivo imaging of live zebrafish embryos revealed that loss of muscle-specific Cavin-1 or expression of a dystrophy-associated Caveolin-3 mutant both led to sarcolemmal damage but only in response to vigorous muscle activity. Our findings define a conserved and critical role in mechanoprotection for the unique membrane architecture generated by the caveolin-cavin system.


Asunto(s)
Caveolinas/metabolismo , Mecanotransducción Celular , Proteínas de la Membrana/metabolismo , Actividad Motora/fisiología , Fibras Musculares Esqueléticas/fisiología , Proteínas de Unión al ARN/metabolismo , Estrés Mecánico , Animales , Caveolinas/genética , Tomografía con Microscopio Electrónico , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Distrofias Musculares/genética , Distrofias Musculares/patología , Proteínas de Unión al ARN/genética , Sarcolema/genética , Sarcolema/patología , Pez Cebra
16.
PLoS One ; 10(6): e0130287, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26086601

RESUMEN

The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3) in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS), an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC) expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS.


Asunto(s)
Caveolina 3/metabolismo , Neoplasias de los Músculos/metabolismo , Proteínas Musculares/metabolismo , Rabdomiosarcoma/metabolismo , Animales , Diferenciación Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Estimación de Kaplan-Meier , Ratones , Neoplasias de los Músculos/mortalidad , Neoplasias de los Músculos/patología , Proteínas Musculares/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Rabdomiosarcoma/mortalidad , Rabdomiosarcoma/patología , Proteínas de Transporte Vesicular
17.
PLoS Biol ; 12(4): e1001832, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24714042

RESUMEN

Several studies have suggested crosstalk between different clathrin-independent endocytic pathways. However, the molecular mechanisms and functional relevance of these interactions are unclear. Caveolins and cavins are crucial components of caveolae, specialized microdomains that also constitute an endocytic route. Here we show that specific caveolar proteins are independently acting negative regulators of clathrin-independent endocytosis. Cavin-1 and Cavin-3, but not Cavin-2 or Cavin-4, are potent inhibitors of the clathrin-independent carriers/GPI-AP enriched early endosomal compartment (CLIC/GEEC) endocytic pathway, in a process independent of caveola formation. Caveolin-1 (CAV1) and CAV3 also inhibit the CLIC/GEEC pathway upon over-expression. Expression of caveolar protein leads to reduction in formation of early CLIC/GEEC carriers, as detected by quantitative electron microscopy analysis. Furthermore, the CLIC/GEEC pathway is upregulated in cells lacking CAV1/Cavin-1 or with reduced expression of Cavin-1 and Cavin-3. Inhibition by caveolins can be mimicked by the isolated caveolin scaffolding domain and is associated with perturbed diffusion of lipid microdomain components, as revealed by fluorescence recovery after photobleaching (FRAP) studies. In the absence of cavins (and caveolae) CAV1 is itself endocytosed preferentially through the CLIC/GEEC pathway, but the pathway loses polarization and sorting attributes with consequences for membrane dynamics and endocytic polarization in migrating cells and adult muscle tissue. We also found that noncaveolar Cavin-1 can act as a modulator for the activity of the key regulator of the CLIC/GEEC pathway, Cdc42. This work provides new insights into the regulation of noncaveolar clathrin-independent endocytosis by specific caveolar proteins, illustrating multiple levels of crosstalk between these pathways. We show for the first time a role for specific cavins in regulating the CLIC/GEEC pathway, provide a new tool to study this pathway, identify caveola-independent functions of the cavins and propose a novel mechanism for inhibition of the CLIC/GEEC pathway by caveolin.


Asunto(s)
Caveolas/metabolismo , Caveolina 1/metabolismo , Endocitosis/fisiología , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo , Células 3T3 , Animales , Células COS , Movimiento Celular , Fenómenos Fisiológicos Celulares , Chlorocebus aethiops , Colesterol/metabolismo , Clatrina , Endocitosis/genética , Activación Enzimática , Proteínas Ligadas a GPI/metabolismo , Receptores de Hialuranos/metabolismo , Proteínas de la Membrana/genética , Ratones , Interferencia de ARN , ARN Interferente Pequeño , Proteínas de Unión al ARN/genética , Proteína de Unión al GTP cdc42/metabolismo
18.
Cell Rep ; 4(2): 238-47, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23850288

RESUMEN

Caveolae and caveolin-1 (CAV1) have been linked to several cellular functions. However, a model explaining their roles in mammalian tissues in vivo is lacking. Unbiased expression profiling in several tissues and cell types identified lipid metabolism as the main target affected by CAV1 deficiency. CAV1-/- mice exhibited impaired hepatic peroxisome proliferator-activated receptor α (PPARα)-dependent oxidative fatty acid metabolism and ketogenesis. Similar results were recapitulated in CAV1-deficient AML12 hepatocytes, suggesting at least a partial cell-autonomous role of hepatocyte CAV1 in metabolic adaptation to fasting. Finally, our experiments suggest that the hepatic phenotypes observed in CAV1-/- mice involve impaired PPARα ligand signaling and attenuated bile acid and FXRα signaling. These results demonstrate the significance of CAV1 in (1) hepatic lipid homeostasis and (2) nuclear hormone receptor (PPARα, FXRα, and SHP) and bile acid signaling.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Caveolina 1/metabolismo , Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Animales , Ratones , Oxidación-Reducción , Transducción de Señal
19.
Biophys J ; 104(11): L19-21, 2013 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-23746530

RESUMEN

A subsarcolemmal tubular system network (SSTN) has been detected in skeletal muscle fibers by confocal imaging after the removal of the sarcolemma. Here we confirm the existence and resolve the fine architecture and the localization of the SSTN at an unprecedented level of detail by examining extracellularly applied tubular system markers in skeletal muscle fiber preparations with a combination of three imaging modalities: confocal fluorescence microscopy, direct stochastic optical reconstruction microscopy, and tomographic electron microscopy. Three-dimensional reconstructions showed that the SSTN was a dense two-dimensional network within the subsarcolemmal space around the fiber, running ~500-600 nm underneath and parallel to the sarcolemma. The SSTN is composed of tubules ~95 nm in width with ~60% of the tubules directed transversely and >30% directed longitudinally. The deeper regular transverse tubules located at each A-I boundary of the sarcomeres branched from the SSTN, indicating individual transverse tubules that form triads are continuous with, but do not directly contact the sarcolemma. This suggests that the SSTN plays an important role in affecting the exchange of deeper tubule lumina with the extracellular space.


Asunto(s)
Imagen Molecular , Fibras Musculares Esqueléticas/citología , Sarcolema/metabolismo , Animales , Imagenología Tridimensional , Microscopía Confocal , Ratas
20.
PLoS One ; 6(8): e22868, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21857959

RESUMEN

Mammalian cells store excess fatty acids as neutral lipids in specialised organelles called lipid droplets (LDs). Using a simple cell-based assay and open-source software we established a high throughput screen for LD formation in A431 cells in order to identify small bioactive molecules affecting lipid storage. Screening an n-butanol extract library from Australian marine organisms we identified 114 extracts that produced either an increase or a decrease in LD formation in fatty acid-treated A431 cells with varying degrees of cytotoxicity. We selected for further analysis a non-cytotoxic extract derived from the genus Spongia (Heterofibria). Solvent partitioning, HPLC fractionation and spectroscopic analysis (NMR, MS) identified a family of related molecules within this extract with unique structural features, a subset of which reduced LD formation. We selected one of these molecules, heterofibrin A1, for more detailed cellular analysis. Inhibition of LD biogenesis by heterofibrin A1 was observed in both A431 cells and AML12 hepatocytes. The activity of heterofibrin A1 was dose dependent with 20 µM inhibiting LD formation and triglyceride accumulation by ∼50% in the presence of 50 µM oleic acid. Using a fluorescent fatty acid analogue we found that heterofibrin A1 significantly reduces the intracellular accumulation of fatty acids and results in the formation of distinct fatty acid metabolites in both cultured cells and in embryos of the zebrafish Danio rerio. In summary we have shown using readily accessible software and a relatively simple assay system that we can identify and isolate bioactive molecules from marine extracts, which affect the formation of LDs and the metabolism of fatty acids both in vitro and in vivo.


Asunto(s)
Organismos Acuáticos/química , Productos Biológicos/farmacología , Gránulos Citoplasmáticos/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , 1-Butanol/química , Alquinos/química , Alquinos/aislamiento & purificación , Alquinos/farmacología , Animales , Australia , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Línea Celular , Línea Celular Tumoral , Fraccionamiento Químico/métodos , Cromatografía Líquida de Alta Presión , Gránulos Citoplasmáticos/metabolismo , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/aislamiento & purificación , Ácidos Grasos Insaturados/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Lípidos/análisis , Espectrometría de Masas , Microscopía Fluorescente , Ácido Oléico/farmacología , Poríferos/química , Triglicéridos/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA