Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci ; 335: 122255, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37967792

RESUMEN

BACKGROUND: Cancer metastasis is a major cause of cancer-related deaths, emphasizing the urgent need for effective therapies. Although it has been shown that GMI, a fungal protein from Ganoderma microsporum, could suppress primary tumor growth in a wide spectrum of cancer types, it is still unclear whether GMI exhibits anti-metastasis properties, particularly in lung cancers. Further investigation is needed. AIMS AND OBJECTIVES: The objective of this study is to investigate the potential inhibitory effects of GMI on lung cancer metastasis in vivo. Utilizing systematic and comprehensive approaches, our research aims to elucidate the underlying molecular mechanisms responsible for the anti-metastatic effects. MATERIALS AND METHODS: In vitro migration and cell adhesion assays addressed the epithelial-to-mesenchymal transition (EMT)-related phenotype. Proteomic and bioinformatic analyses identified the GMI-regulated proteins and cellular responses. GMI-treated LLC1-bearing mice were analyzed using IVIS Spectrum to assess the anti-metastatic effect. KEY FINDINGS: GMI inhibits EMT as well as cell migration. GMI disrupts cell adhesion and downregulates integrin, resulting in inhibition of phosphorylated FAK. GMI induces macropinocytosis and lysosome-mediated degradation of integrin αv, α5, α6 and ß1. GMI downregulates Slug via inhibition of FAK activity, which in turn enhances expressions of epithelial-related markers and decreases cell mobility. Mechanistically, GMI-induced FAK inhibition engenders MDM2 expression and enhances MDM2/p21/Slug complex formation, leading to Slug degradation. GMI treatment reduces the metastatic pulmonary lesion and prolongs the survival of LLC1-bearing mice. SIGNIFICANCE: Our findings highlight GMI as a promising therapeutic candidate for metastatic lung cancers, offering potential avenues for further research and drug development.


Asunto(s)
Neoplasias Pulmonares , Animales , Ratones , Neoplasias Pulmonares/patología , Adhesiones Focales/metabolismo , Adhesiones Focales/patología , Proteómica , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal , Metástasis de la Neoplasia/patología
3.
Int J Biol Macromol ; 242(Pt 4): 125181, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37270134

RESUMEN

Ganoderma lucidum polysaccharides (GPS) have many functions. Polysaccharides are abundant in G. lucidum mycelia, but it is unclear whether the production and chemical characteristics of polysaccharides are related to the liquid cultural periods of mycelia. This study harvests G. lucidum mycelia at different cultural stages and isolates GPS and sulfated polysaccharides (GSPS) separately to determine an optimum cultural duration. After 42 and 49 days of mycelia are found to be the best times to harvest GPS and GSPS. Characteristic studies show that glucose and galactose are the main sugars in GPS and GSPS. The molecular weights of various GPS and GSPS are mainly distributed at >1000 kDa and from 101 to 1000 kDa. The sulfate content of GSPS at Day 49 is greater than that at Day 7. GPS and GSPS at 49 days exhibits a good anticancer effect but does not affect normal fibroblasts. GPS and GSPS that is isolated on day 49 inhibits lung cancer by suppressing epidermal growth factor receptor (EGFR) and transforming growth factor beta receptor (TGFßR)-mediated signaling networks. These results show that the mycelia of G. lucidum that are cultured for 49 days exhibit the best biological characteristics.


Asunto(s)
Ganoderma , Reishi , Reishi/química , Polisacáridos/química , Micelio/química , Glucosa/metabolismo , Ganoderma/química
4.
Int J Biol Macromol ; 241: 124648, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37119883

RESUMEN

Clinically, COVID-19 is often accompanied by a severe immune response (cytokine storm) which produces a large number of cytokines, such as TNF-α, IL-6 and IL-12, and consequently causes acute respiratory distress syndrome (ARDS). GMI is a type of fungal immunomodulatory protein that is cloned from Ganoderma microsporum and acts as modulating immunocyte for various inflammatory diseases. This study identifies GMI as a potential anti-inflammatory agent and determines the effects of GMI on the inhibition of SARS-CoV-2-induced cytokine secretion. Functional studies showed that SARS-CoV-2 envelope (E) protein induces inflammatory process in murine macrophages RAW264.7 and MH-S cells and in phorbol 12-myristate 13-acetate (PMA)-stimulated human THP-1 cells. GMI exhibits a strong inhibitory effect for SARS-CoV-2-E-induced pro-inflammatory mediators, including NO, TNF-α, IL-6, and IL-12 in macrophages. GMI reduces SARS-CoV-2-E-induced intracellular inflammatory molecules, such as iNOS and COX-2, and inhibits SARS-CoV-2-E-stimulated phosphorylation of ERK1/2 and P38. GMI also downregulates pro-inflammatory cytokine levels in lung tissue and serum after the mice inhale SARS-CoV-2-E protein. In conclusion, this study shows that GMI acts as an agent to alleviate SARS-CoV-2-E-induced inflammation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Animales , Ratones , SARS-CoV-2/metabolismo , Interleucina-6 , Factor de Necrosis Tumoral alfa , Inflamación , Citocinas/metabolismo , Macrófagos/metabolismo , Inmunidad , Interleucina-12
5.
Int J Biol Macromol ; 238: 124144, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-36958446

RESUMEN

Sulfated polysaccharides (Ac-SPSs) of Antrodia cinnamomea present anti-cancer activity. However, the anti-cancer mechanism of Ac-SPSs is not fully understood and remains largely unexplored. In this study, we identify an Ac-SPS with 7.9 kDa, noted ZnF3, and aim to examine the dual anti-cancer functions of ZnF3 on inhibiting cancer cells and activating macrophages. A biological study shows that ZnF3 inhibits lung cancer cells by inducing subG1 population and apoptosis. ZnF3 downregulates the expression of TGFß receptor in lung cancer cells. In parallel, ZnF3 activates macrophages via induction of TNF-α and IL-6 secretion, NO production and phagocytosis. ZnF3 activates AKT/mTOR pathway and induces M1 type macrophage polarization. Cancer cells co-cultured with ZnF3-stimulated macrophages, leading to inhibition of lung cancer cells. This study demonstrates that ZnF3 not only directly inhibits cancer cells but also activates macrophages-mediated cytotoxic effect on cancer cells. Moreover, ZnF3 may be a supplement for suppressing lung cancer cells.


Asunto(s)
Antrodia , Neoplasias Pulmonares , Humanos , Sulfatos/farmacología , Polisacáridos/farmacología , Apoptosis , Muerte Celular , Neoplasias Pulmonares/tratamiento farmacológico , Macrófagos
6.
Int J Biol Macromol ; 227: 1-9, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528139

RESUMEN

Polysaccharide from Laminaria japonica (LJPS) exhibits multiple biological functions. However, we found that crude LJPS doesn't show good anti-lung cancer activity in this study. We therefore used tangential flow filtration (TFF) system to optimize the anticancer activity of LJPS. We divided the crude LJPS into two fractions by TFF system with a 10 kDa filter and denoted as retentate (10K-R) and filtration (10K-F). The chemical assay revealed that the main molecular mass of 10K-R and 10K-F is about 985 and 3 kDa, respectively. The main components of 10K-R include fucose (19.3 %), and glucose (59.5 %); while glucose (88.6 %) is a major component of 10K-F. Biological functions showed that 10K-R but not 10K-F inhibited the viability and mobility of cancer cells. 10K-R downregulated expressions of transforming growth factor ß receptor and Slug, and inhibited intracellular signaling molecules, including FAK, AKT, ERK1/2, and Smad2. This study is the first concept to purify the polysaccharide by TFF system and showed the potential mechanism of 10K-R inhibited cancer cells.


Asunto(s)
Laminaria , Neoplasias , Humanos , Laminaria/química , Polisacáridos/química , Transducción de Señal , Glucosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...