Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
2.
Hum Mov Sci ; 97: 103257, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39126810

RESUMEN

BACKGROUND: This study aimed to explore the associations between brain structures, cognition, and motor control in participants with mild cognitive impairment (MCI), with a focus on dual-task performance. METHODS: Thirty MCI patients and thirty healthy controls were enrolled. Cognitive function was assessed using the Montreal Cognitive Assessment (MoCA). Structural magnetic resonance imaging data were analyzed using voxel-based morphometry (VBM) to calculate brain parenchyma volume and gray matter volume (GMV). Participants performed single- and dual-task Timed Up and Go (TUG) tests, and the correlations between significant GMV differences and task execution time was analyzed. RESULTS: MCI patients showed significantly lower MoCA scores, particularly in visuospatial/executive, attention, and delayed recall domains (p < 0.05). Dual-task TUG execution time was significantly increased in MCI patients (p < 0.05). The GMV in the right anterior lobe of the cerebellum and both insulae was positively correlated with visuospatial/executive scores (FDR-corrected, p < 0.05). The GMV of the right cerebellar anterior lobe and insula were significantly reduced in MCI patients (p < 0.05). The GMV of the right cerebellar anterior lobe was negatively correlated with dual-task execution time (r = -0.32, p = 0.012). CONCLUSION: Smaller GMV in the right anterior lobe of the cerebellum was associated with impaired dual-task performance, which may provide more evidence for the neural mechanisms of cognitive and motor function impairments in MCI.


Asunto(s)
Encéfalo , Cognición , Disfunción Cognitiva , Imagen por Resonancia Magnética , Humanos , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen , Masculino , Femenino , Anciano , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Persona de Mediana Edad , Sustancia Gris/diagnóstico por imagen , Pruebas Neuropsicológicas , Desempeño Psicomotor/fisiología , Función Ejecutiva/fisiología , Atención/fisiología
3.
Front Nutr ; 11: 1424286, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206315

RESUMEN

Introduction: Metabolic syndrome (MetS) is significantly associated with osteoarthritis (OA), especially in MetS patients with blood glucose abnormalities, such as elevated fasting blood glucose (FG), which may increase OA risk. Dietary modifications, especially the intake of polyunsaturated fatty acids (PUFAs), are regarded as a potential means of preventing MetS and its complications. However, regarding the effects of FG, Omega-3s, and Omega-6s on OA, the research conclusions are conflicting, which is attributed to the complexity of the pathogenesis of OA. Therefore, it is imperative to thoroughly evaluate multiple factors to fully understand their role in OA, which needs further exploration and clarification. Methods: Two-sample univariable Mendelian randomization (UVMR) and multivariable Mendelian randomization (MVMR) were employed to examine the causal effect of metabolic related factors on hip OA (HOA) or knee OA (KOA). The exposure and outcome datasets were obtained from Open GWAS IEU. All cases were independent European ancestry data. Three MR methods were performed to estimate the causal effect: inverse-variance weighting (IVW), weighted median method (WMM), and MR-Egger regression. Additionally, the intercept analysis in MR-Egger regression is used to estimate pleiotropy, and the IVW method and MR-Egger regression are used to test the heterogeneity. Results: The UVMR analysis revealed a causal relationship between FG and HOA. By MVMR analysis, the study discovered a significant link between FG (OR = 0.79, 95%CI: 0.64∼0.99, p = 0.036) and KOA after accounting for body mass index (BMI), age, and sex hormone-binding globulin (SHBG). However, no causal effects of FG on HOA were seen. Omega-3s and Omega-6s did not have a causal influence on HOA or KOA. No significant evidence of pleiotropy was identified. Discussion: The MR investigation showed a protective effect of FG on KOA development but no causal relationship between FG and HOA. No causal effect of Omega-3s and Omega-6s on HOA and KOA was observed. Shared genetic overlaps might also exist between BMI and age, SHBG and PUFAs for OA development. This finding offers a novel insight into the treatment and prevention of KOA from glucose metabolism perspective. The FG cutoff value should be explored in the future, and consideration should be given to demonstrating the study in populations other than Europeans.

4.
Front Bioeng Biotechnol ; 12: 1329437, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572361

RESUMEN

The relationships of lumbar proprioception with postural control have not been clarified in people with chronic low back pain. This study aimed to compare the associations between lumbar proprioception and postural control in response to calf vibration in individuals with and without chronic low back pain. In this study, we recruited twenty patients with chronic low back pain (CLBP group) and twenty healthy control subjects (HC group) aged between 18 and 50 years. This study was a cross-sectional study and completed from May 2022 to October 2022. The passive joint repositioning sense (PJRS) test for two positions (15° and 35°) were used to assess lumbar proprioception and expressed as the mean of reposition error (RE). Postural control was tested by adding and removing calf vibration while standing on a stable force plate with eyes closed. The sway velocity in the anterior-posterior (AP) direction of center of pressure (COP) data with a window of 15s epoch at baseline, during and after calf vibration was used to evaluate postural control. Mann-Whitney U-tests were used to compare the difference of lumbar proprioception between two groups, and the independent t-tests were used to compare the difference of postural control at baseline and during vibration, and a mixed design ANOVA was used to compare the difference of postural control during post-perturbation. In addition, to explore the association between postural control and lumbar proprioception and pain intensity, Spearman's correlations were used for each group. The major results are: (1) significantly higher PJRS on RE of 15° (CLBP: 95% CI [2.03, 3.70]; HC: 95% CI [1.03, 1.93]) and PJRS on RE of 35° (CLBP: 95% CI [2.59, 4.88]; HC: 95% CI [1.07, 3.00]) were found in the CLBP group; (2) AP velocity was not different between the CLBP group and the HC group at baseline and during calf vibration. However, AP velocity was significantly larger in the CLBP group compared with the HC group at epoch 2-14 after calf vibration, and AP velocity for the CLBP group took a longer time (23 epochs) to return to the baseline after calf vibration compared with the HC group (9 epochs); (3) lumbar proprioception represented by PJRS on RE of 15°correlated negatively with AP velocity during and after vibration for the HC group. Within the CLBP group, no significant relationships between PJRS on RE for two positions (15° and 35°) and AP velocity in any postural phases were found. In conclusion, the CLBP group has poorer lumbar proprioception, slower proprioceptive reweighting and impaired postural control after calf vibration compared to the HC group. Lumbar proprioception offers different information on the control strategy of standing control for individuals with and without CLBP in the situations with proprioceptive disturbance. These results highlight the significance of assessing lumbar proprioception and postural control in CLBP patients.

5.
BMC Med ; 22(1): 115, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38481272

RESUMEN

BACKGROUND: The global dementia prevalence is surging, necessitating research into contributing factors. We aimed to investigate the association between metabolic syndrome (MetS), its components, serum uric acid (SUA) levels, and dementia risk. METHODS: Our prospective study comprised 466,788 participants without pre-existing MetS from the UK Biobank. We confirmed dementia diagnoses based on the ICD-10 criteria (F00-03). To evaluate the dementia risk concerning MetS, its components, and SUA levels, we applied Cox proportional hazards models, while adjusting for demographic factors. RESULTS: Over a median follow-up of 12.7 years, we identified 6845 dementia cases. Individuals with MetS had a 25% higher risk of all-cause dementia (hazard ratio [HR] = 1.25, 95% confidence interval [CI] = 1.19-1.31). The risk increased with the number of MetS components including central obesity, dyslipidemia for high-density lipoprotein (HDL) cholesterol, hypertension, hyperglycemia, and dyslipidemia for triglycerides. Particularly for those with all five components (HR = 1.76, 95% CI = 1.51-2.04). Dyslipidemia for HDL cholesterol, hypertension, hyperglycemia, and dyslipidemia for triglycerides were independently associated with elevated dementia risk (p < 0.01). MetS was further linked to an increased risk of all-cause dementia (11%) and vascular dementia (VD, 50%) among individuals with SUA levels exceeding 400 µmol/L (all-cause dementia: HR = 1.11, 95% CI = 1.02-1.21; VD: HR = 1.50, 95% CI = 1.28-1.77). CONCLUSIONS: Our study provides robust evidence supporting the association between MetS, its components, and dementia risk. These findings emphasize the importance of considering MetS and SUA levels in assessing dementia risk, offering valuable insights for prevention and management strategies.


Asunto(s)
Demencia , Dislipidemias , Hiperglucemia , Hipertensión , Síndrome Metabólico , Humanos , Ácido Úrico , Estudios Prospectivos , Factores de Riesgo , Hipertensión/complicaciones , HDL-Colesterol , Triglicéridos , Dislipidemias/complicaciones , Demencia/etiología , Demencia/complicaciones
6.
Front Neurol ; 14: 1144900, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37273697

RESUMEN

Introduction: Patients with chronic low back pain (CLBP) exhibit changes in proprioceptive weighting and impaired postural control. This study aimed to investigate proprioceptive weighting changes in patients with CLBP and their influence on posture control. Methods: Sixteen patients with CLBP and 16 healthy controls were recruited. All participants completed the joint reposition test sense (JRS) and threshold to detect passive motion test (TTDPM). The absolute errors (AE) of the reposition and perception angles were recorded. Proprioceptive postural control was tested by applying vibrations to the triceps surae or lumbar paravertebral muscles while standing on a stable or unstable force plate. Sway length and sway velocity along the anteroposterior (AP) and mediolateral (ML) directions were assessed. Relative proprioceptive weighting (RPW) was used to evaluate the proprioception reweighting ability. Higher values indicated increased reliance on calf proprioception. Results: There was no significant difference in age, gender, and BMI between subjects with and without CLBP. The AE and motion perception angle in the CLBP group were significantly higher than those in the control group (JRS of 15°: 2.50 (2.50) vs. 1.50 (1.42), JRS of 35°: 3.83 (3.75) vs. 1.67 (2.00), pJRS < 0.01; 1.92 (1.18) vs. 0.68 (0.52), pTTDPM < 0.001). The CLBP group demonstrated a significantly higher RPW value than the healthy controls on an unstable surface (0.58 ± 0.21 vs. 0.41 ± 0.26, p < 0.05). Under the condition of triceps surae vibration, the sway length (pstable < 0.05; punstable < 0.001), AP velocity (pstable < 0.01; punstable < 0.001) and ML velocity (punstable < 0.05) had significant group main effects. Moreover, when the triceps surae vibrated under the unstable surface, the differences during vibration and post vibration in sway length and AP velocity between the groups were significantly higher in the CLBP group than in the healthy group (p < 0.05). However, under the condition of lumbar paravertebral muscle vibration, no significant group main effect was observed. Conclusion: The patients with CLBP exhibited impaired dynamic postural control in response to disturbances, potentially linked to changes in proprioceptive weighting.

7.
Front Aging Neurosci ; 15: 1130230, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37020859

RESUMEN

Aging is a non-modifiable risk factor for stroke and the global burden of stroke is continuing to increase due to the aging society. Muscle dysfunction, common sequela of stroke, has long been of research interests. Therefore, how to accurately assess muscle function is particularly important. Electrical impedance myography (EIM) has proven to be feasible to assess muscle impairment in patients with stroke in terms of micro structures, such as muscle membrane integrity, extracellular and intracellular fluids. However, EIM alone is not sufficient to assess muscle function comprehensively given the complex contributors to paretic muscle after an insult. This article discusses the potential to combine EIM and other common quantitative methods as ways to improve the assessment of muscle function in stroke survivors. Clinically, these combined assessments provide not only a distinct advantage for greater accuracy of muscle assessment through cross-validation, but also the physiological explanation on muscle dysfunction at the micro level. Different combinations of assessments are discussed with insights for different purposes. The assessments of morphological, mechanical and contractile properties combined with EIM are focused since changes in muscle structures, tone and strength directly reflect the muscle function of stroke survivors. With advances in computational technology, finite element model and machine learning model that incorporate multi-modal evaluation parameters to enable the establishment of predictive or diagnostic model will be the next step forward to assess muscle function for individual with stroke.

8.
Front Neurosci ; 17: 1135689, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998734

RESUMEN

Background: The patients with chronic low back pain (CLBP) showed impaired postural control, especially in challenging postural task. The dorsolateral prefrontal cortex (DLPFC) is reported to involve in the complex balance task, which required considerable attentional control. The effect of intermittent theta burst stimulation (iTBS) over the DLPFC to the capacity of postural control of CLBP patients is still unknown. Methods: Participants diagnosed with CLBP received a single-session iTBS over the left DLPFC. All the participants completed the postural control tasks of single-leg (left/right) standing before and after iTBS. The activation changes of the DLPFC and M1 before and after iTBS were recorded by functional near-infrared spectroscopy (fNIRS). The activation pattern of the trunk [transversus abdominis (TrA), superficial lumbar multifidus (SLM)] and leg [tibialis anterior (TA), gastrocnemius medialis (GM)] muscles including root mean square (RMS) and co-contraction index (CCI) during single-leg standing were measured by surface electromyography (sEMG) before and after the intervention. The paired t-test was used to test the difference before and after iTBS. Pearson correlation analyses were performed to test the relationship between the oxyhemoglobin concentration and sEMG outcome variables (RMS and CCI). Results: Overall, 20 participants were recruited. In the right-leg standing condition, compared with before iTBS, the CCI of the right TrA/SLM was significantly decreased (t = -2.172, p = 0.043), and the RMS of the right GM was significantly increased (t = 4.024, p = 0.001) after iTBS. The activation of the left DLPFC (t = 2.783, p = 0.012) and left M1 (t = 2.752, p = 0.013) were significantly decreased and the relationship between the left DLPFC and M1 was significant after iTBS (r = 0.575, p = 0.014). Correlation analysis showed the hemoglobin concentration of M1 was negatively correlated with the RMS of the right GM (r = -0.659, p = 0.03) and positively correlated between CCI of the right TrA/SLM (r = 0.503, p = 0.047) after iTBS. There was no significant difference in the brain or muscle activation change in the left leg-standing condition between before and after iTBS. Conclusion: Intermittent theta burst stimulation over the left DLPFC seems to be able to improve the muscle activation pattern during postural control ability in challenging postural task, which would provide a new approach to the treatment of CLBP.

9.
Front Hum Neurosci ; 17: 1085831, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816497

RESUMEN

Introduction: Postural control deficits are a potential cause of persistent and recurrent pain in patients with chronic low back pain (CLBP). Although some studies have confirmed that the dorsolateral prefrontal cortex (DLPFC) contributes to pain regulation in CLBP, its role in the postural control of patients with CLBP remains unclear. Therefore, this study aimed to investigate the DLPFC activation of patients with CLBP and healthy controls under different upright stance task conditions. Methods: Twenty patients with CLBP (26.50 ± 2.48 years) and 20 healthy controls (25.75 ± 3.57 years) performed upright stance tasks under three conditions: Task-1 was static balance with eyes open; Task-2 was static balance with eyes closed; Task-3 involved dynamic balance on an unstable surface with eyes open. A wireless functional near-infrared spectroscopy (fNIRS) system measured cortical activity, including the bilateral DLPFC, pre-motor cortex (PMC) and supplementary motor area (SMA), the primary motor cortex (M1), the primary somatosensory cortex (S1), and a force platform measured balance parameters during upright stance. Results: The two-way repeated measures ANOVA results showed significant interaction in bilateral PMC/SMA activation. Moreover, patients with CLBP had significantly increased right DLPFC activation and higher sway 32 area and velocity than healthy controls during upright stance. Discussion: Our results imply that PMC/SMA and DLPFC maintain standing balance. The patients with CLBP have higher cortical activity and upright stance control deficits, which may indicate that the patients with CLBP have low neural efficiency and need more motor resources to maintain balance.

10.
Pain Ther ; 12(1): 293-308, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36454387

RESUMEN

INTRODUCTION: This study aimed to investigate the effects of progressive postural control exercise (PPCE) vs core stability exercise (CSE) in patients with chronic low back pain (CLBP). METHODS: A total of 34 young-adult participants with CLBP were randomly assigned to two groups (the PPCE group and the CSE group). They received instructions for two different exercise training regimens persisting over 8 weeks. Before, after, and at 6 months after the intervention, the participants were evaluated on the basis of pain intensity (VAS), degree of dysfunction (ODI and RMDQ), contractility of transversus abdominis (TrA) and lumbar multifidus (MF), as well as the ability to control static posture. RESULTS: There was no significant difference between the results of the PPCE group and the CSE group. At the 6-month follow-up after the 8-week treatment, the scores of VAS, ODI, and RMDQ in the two groups decreased significantly compared to before (p < 0.05). The percentage change in thickness of bilateral TrA and left MF (p < 0.05) was elevated and the sway area of center of pressure during static stance tasks with eyes opened (p < 0.05) was decreased in both groups. CONCLUSION: In the short term, PPCE provides positive effects similar to those of core stability exercise in patients with CLBP. The effective mechanism of PPCE might be the consequence of neuromuscular plasticity and adaptation adjustments. PPCE enriches the choices of treatment for CLBP. CLINICAL TRIAL REGISTRATION: The trial was registered at www.chictr.org.cn , identifier ChiCTR2100043113.


Chronic low back pain (CLBP) is a widespread disorder with highly recurrent prevalence. As of now, the treatment effects are not satisfactory, leading to a search for novel therapies that might work better in patients with CLBP. This study comprehensively explored the effects of progressive postural control exercise, as compared to core stability exercise, on patients with CLBP. The outcomes included pain intensity, disability of daily life, contractility of trunk muscles, and postural control. The results of the study showed that the efficacy of exercises in patients in the experimental group was similar to that of the control group and both exercise treatments improved the pain intensity, the disability, the contractile function of trunk muscle, as well as postural control in patients with CLBP in the short term. The mechanism of the effects of progressive postural control exercise might be the consequence of "neuromuscular plasticity" and adaptation adjustments.

11.
Front Neurol ; 13: 959917, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36468047

RESUMEN

Background: Stroke is among the leading causes of disability of worldwide. Gait dysfunction is common in stroke survivors, and substantial advance is yet to be made in stroke rehabilitation practice to improve the clinical outcome of gait recovery. The role of the upper limb in gait recovery has been emphasized in the literature. Recent studies proposed that four limbs coordinated interventions, coined the term "interlimb-coordinated interventions," could promote gait function by increasing the neural coupling between the arms and legs. A high-quality review is essential to examine the clinical improvement and neurophysiological changes following interlimb-coordinated interventions in patients with stroke. Methods: Systematic review and meta-analysis will be conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The literature will be retrieved from the databases of OVID, MEDLINE, PubMed, Web of Science, EMBASE, and PsycINFO. Studies published in English over the past 15 years will be included. All of the clinical studies (e.g., randomized, pseudorandomized and non-randomized controlled trials, uncontrolled trials, and case series) that employed interlimb intervention and assessed gait function of patients with stroke will be included. Clinical functions of gait, balance, lower limb functions, and neurophysiologic changes are the outcome measures of interest. Statistical analyses will be performed using the Comprehensive Meta-Analysis version 3. Discussion: The findings of this study will provide insight into the clinical benefits and the neurophysiological adaptations of the nervous system induced by interlimb-coordinated intervention in patients with stroke. This would guide clinical decision-making and the future development of targeted neurorehabilitation protocol in stroke rehabilitation to improve gait and motor function in patients with stroke. Increasing neuroplasticity through four-limb intervention might complement therapeutic rehabilitation strategies in this patient group. The findings could also be insightful for other cerebral diseases.

12.
Front Pediatr ; 10: 932734, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110116

RESUMEN

Background: Social distancing and school closures during the COVID-19 pandemic reduced the physical activities of the preschool children living in China. However, the effects of home-based exercise on the physical fitness of Chinese preschool children during COVID-19 school closures are still unknown. This study aimed to investigate the effects of home-based exercise on the physical fitness of Chinese preschool children during COVID-19 school closure. Methods: In this retrospective analysis, data from 1,608 Chinese preschool children (aged 3-5.5 years) in a second-tier city of Guangdong Province of China (Zhongshan city) were extracted from three successive National Physical Fitness Measurement (NPFM) from 2019 to 2021. NPFM consists of weight, height, and six subtests of physical fitness including 10-m shuttle run test (SRT), standing long jump (SLJ), balance beam walking (BBW), sit-and-reach (SR), tennis throwing (TT), and double-leg timed hop (DTH) tests. The change differences or change ratios of all the items in NPFM between any two successive years from 2019 to 2021 were compared. The exercise profiles about home-based and outdoor exercise before, during, and after COVID-19 school closure were obtained from 185 preschool children via retrospective telephone survey. Results: Between 2019 and 2021, 1,608 preschool children were included in this study. We observed larger changes in SLJ, SR, TT, and DTH tests during school closure than after school closure. But the children showed lower reduction rates in the completion time of SRT and BBW. During school closure, higher change ratios in SLJ and TT were observed in the children primarily participating in home-based exercise than those primarily participating in outdoor exercise. However, no statistical differences were observed in the changes in SRT and BBW between home-based and outdoor training groups. Conclusion: The home-based exercise program might be an alternative approach to improve the physical fitness of preschool children during COVID-19 school closure, but could not be beneficial to speed-agility and balance functions. A specific guideline geared toward a home-based exercise program during the COVID-19 outbreak is highly needed.

13.
Front Neurosci ; 16: 964060, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937889

RESUMEN

Ischemic stroke is a serious medical condition that is caused by cerebral vascular occlusion and leads to neurological dysfunction. After stroke, patients suffer from long-term sensory, motor and cognitive impairment. Non-invasive neuromodulation technology has been widely studied in the field of stroke rehabilitation. Transcranial ultrasound stimulation (TUS), as a safe and non-invasive technique with deep penetration ability and a tiny focus, is an emerging technology. It can produce mechanical and thermal effects by delivering sound waves to brain tissue that can induce the production of neurotrophic factors (NFs) in the brain, and reduce cell apoptosis and the inflammatory response. TUS, which involves application of an acoustic wave, can also dissolve blood clots and be used to deliver therapeutic drugs to the ischemic region. TUS has great potential in the treatment of ischemic stroke. Future advancements in imaging and parameter optimization will improve the safety and efficacy of this technology in the treatment of ischemic stroke.

14.
JMIR Serious Games ; 10(3): e33755, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35802415

RESUMEN

BACKGROUND: Stroke is among the leading causes of long-term disability worldwide. Motor impairments after stroke not only impact the individuals quality of life but also lay substantial burdens on the society. Motor planning is a key component of cognitive function that impacts motor control. Hand movements such as grasping or reaching to grasp require the application of correct force and the coordination of multiple limb segments. Successful completion of hand motor task requires a certain degree of cognitive function to anticipate the requirement of the task. Cognitive function may thus be a confounding factor to rehabilitation outcomes. OBJECTIVE: This study aims to explore the impact of cognitive function on functional outcomes in people with subacute stroke after VR intervention. METHODS: Patients with stroke were first stratified into cognitively normal (CN) and cognitively impaired (CI), followed by allocation to the VR or control group (CG). Fugl-Meyer Assessment for Upper Extremity (FMA-UE), Barthel Index (BI), and Instrumental Activities of Daily Living (IADL) were recorded at baseline, 3 weeks after the intervention, and 3 and 6 months after the intervention. The between-group and within-group differences were assessed by repeated-measures analysis of variance (ANOVA). RESULTS: The between-group comparison indicated that FMA-UE, BI, and IADL (time effect P<.001 for all) scores improved significantly in both groups after the intervention. Repeated-measures ANOVA indicated that FMA-UE, BI, and IADL (time effect P<.001 for all) were significantly different in each subgroup after the intervention. For BI score, the ANOVA results showed obvious interaction effects (treatment × time × cognitive effect, P=.04). CONCLUSIONS: VR intervention was as effective as traditional conventional therapy in improving upper limb function regardless of the cognitive functional level. Patients with stroke with impaired cognitive function may gain more improvement in upper limb function and independency in performing activities of daily living after a VR-based intervention. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR-IOC-15006064; https://tinyurl.com/4c9vkrrn.

15.
Front Neurol ; 13: 904002, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903113

RESUMEN

Objective: The transversus abdominis (TrA) and multifidus (MF) muscles are essential in preventing chronic low back pain (CLBP) recurrence by maintaining segmental stabilization and stiffness. Sling exercise is a high-level core stability training to effectively improve the activities of the TrA and MF muscles. However, the neural mechanism for sling exercise-induced neural plasticity change in the primary motor cortex (M1) remains unclear. This study aimed to investigate the role of sling exercise in the reorganization of the motor cortical representation of the TrA and MF muscles. Methods: Twenty patients with CLBP and 10 healthy individuals were recruited. For map volume, area, the center of gravity (CoG) location (medial-lateral location and anterior-posterior location), and latency, two-way ANOVA was performed to compare the effects of groups (the CLBP-pre, CLBP-post, and healthy groups) and the two muscles (the TrA and MF muscles). The Visual Analog Scale (VAS), the Oswestry Disability Index (ODI), and postural balance stability were assessed at baseline and at the end of 2 weeks of sling exercise. Linear correlations between VAS or ODI and CoG locations were assessed by Pearson's correlation test. Results: 2 weeks of sling exercise induced both the anterior-medial (P < 0.001) and anterior-posterior (P = 0.025) shifts of the MF muscle representation at the left motor cortex in patients with CLBP. Anterior-medial (P = 0.009) shift of the TrA muscle representation at the right motor cortex was observed in patients with CLBP. The motor cortical representation of the two muscles in patients with CLBP after sling exercise (TrA: 2.88 ± 0.27 cm lateral and 1.53 ± 0.47 cm anterior of vertex; MF: 3.02 ± 0.48 cm lateral and 1.62 ± 0.40 cm anterior of vertex) closely resembled that observed in healthy individuals (TrA: 2.83 ± 0.48 cm lateral and 2.00 ± 0.43 cm anterior of vertex; MF: 2.94 ± 0.43 cm lateral and 1.77 ± 0.48 cm anterior of vertex). The VAS and the ODI were reduced following the sling exercise (VAS: P < 0.001; ODI: P < 0.001). Conclusion: This study provides evidence that sling training can drive plasticity changes in the motor system, which corresponds with the reduction in pain and disability levels in patients with CLBP. This study was registered in the Chinese Clinical Trial Registry (Clinical Trial Registration Number: ChiCTR2100045904, http://www.chictr.org.cn/showproj.aspx?proj=125819). Clinical Trial Registration: ChiCTR2100045904.

16.
Front Neurosci ; 16: 886909, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720692

RESUMEN

Objective: Increased muscle co-contraction of the agonist and antagonist muscles during voluntary movement is commonly observed in the upper limbs of stroke survivors. Much remain to be understood about the underlying mechanism. The aim of the study is to investigate the correlation between increased muscle co-contraction and the function of the corticospinal tract (CST). Methods: Nine stroke survivors and nine age-matched healthy individuals were recruited. All the participants were instructed to perform isometric maximal voluntary contraction (MVC) and horizontal task which consist of sponge grasp, horizontal transportation, and sponge release. We recorded electromyography (EMG) activities from four muscle groups during the MVC test and horizontal task in the upper limbs of stroke survivors. The muscle groups consist of extensor digitorum (ED), flexor digitorum (FD), triceps brachii (TRI), and biceps brachii (BIC). The root mean square (RMS) of EMG was applied to assess the muscle activation during horizontal task. We adopted a co-contraction index (CI) to evaluate the degree of muscle co-contraction. CST function was evaluated by the motor-evoked potential (MEP) parameters, including resting motor threshold, amplitude, latency, and central motor conduction time. We employed correlation analysis to probe the association between CI and MEP parameters. Results: The RMS, CI, and MEP parameters on the affected side showed significant difference compared with the unaffected side of stroke survivors and the healthy group. The result of correlation analysis showed that CI was significantly correlated with MEP parameters in stroke survivors. Conclusion: There existed increased muscle co-contraction and impairment in CST functionality on the affected side of stroke survivors. The increased muscle co-contraction was correlated with the impairment of the CST. Intervention that could improve the excitability of the CST may contribute to the recovery of muscle discoordination in the upper limbs of stroke survivors.

17.
J Neuroeng Rehabil ; 19(1): 56, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672756

RESUMEN

BACKGROUND: Gait disability affects the daily lives of patients with stroke in both home and community settings. An abnormal foot-ankle position can cause instability on the supporting surface and negatively affect gait. Our research team explored the ability of a portable peroneal nerve-targeting electrical stimulator to improve gait ability by adjusting the foot-ankle position during walking in patients with chronic stroke undergoing home-based rehabilitation. METHODS: This was a double-blinded, parallel-group randomized controlled trial. Thirty-one patients with chronic stroke and ankle-foot motor impairment were randomized to receive 3 weeks of gait training, which involved using the transcutaneous peroneal nerve stimulator while walking (tPNS group; n = 16, mean age: 52.25 years), or conventional home and/or community gait training therapy (CT group; n = 15, mean age: 54.8 years). Functional assessments were performed before and after the 3-week intervention. The outcome measures included spatiotemporal gait parameters, three-dimensional kinematic and kinetic data on the ankle-foot joint, and a clinical motor and balance function assessment based on the Fugl-Meyer Assessment of Lower Extremity (FMA-LE) and Berg Balance scales (BBS). Additionally, 16 age-matched healthy adults served as a baseline control of three-dimensional gait data for both trial groups. RESULTS: The FMA-LE and BBS scores improved in both the tPNS groups (p = 0.004 and 0.001, respectively) and CT groups (p = 0.034 and 0.028, respectively) from before to after training. Participants in the tPNS group exhibited significant differences in spatiotemporal gait parameters, including double feet support, stride length, and walking speed of affected side, and the unaffected foot off within a gait cycle after training (p = 0.043, 0.017, 0.001 and 0.010, respectively). Additionally, the tPNS group exhibited significant differences in kinematic parameters, such as the ankle angle at the transverse plane (p = 0.021) and foot progression angle at the frontal plane (p = 0.009) upon initial contact, and the peak ankle joint angle at the transverse plane (p = 0.023) and foot progression angle (FPA) at the frontal and transverse planes (p = 0.032 and 0.046, respectively) during gait cycles after 3 weeks of training. CONCLUSIONS: Use of a portable tPNS device during walking tasks appeared to improve spatiotemporal gait parameters and ankle and foot angles more effectively than conventional home rehabilitation in patients with chronic stroke. Although guidelines for home-based rehabilitation training services and an increasing variety of market devices are available, no evidence for improvement of motor function and balance was superior to conventional rehabilitation. Trial registration Chictr, ChiCTR2000040137. Registered 22 November 2020, https://www.chictr.org.cn/showproj.aspx?proj=64424.


Asunto(s)
Trastornos Neurológicos de la Marcha , Neuropatías Peroneas , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Adulto , Fenómenos Biomecánicos , Marcha , Trastornos Neurológicos de la Marcha/rehabilitación , Humanos , Persona de Mediana Edad , Neuropatías Peroneas/complicaciones , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Rehabilitación de Accidente Cerebrovascular/efectos adversos , Resultado del Tratamiento
18.
Front Mol Neurosci ; 15: 846554, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35531067

RESUMEN

Objectives: Lumbar disc herniation (LDH) is a musculoskeletal disease that contributes to low back pain, sciatica, and movement disorder. Existing studies have suggested that the immune environment factors are the primary contributions to LDH. However, its etiology remains unknown. We sought to identify the potential diagnostic biomarkers and analyze the immune infiltration pattern in LDH. Methods: The whole-blood gene expression level profiles of GSE124272 and GSE150408 were downloaded from the Gene Expression Omnibus (GEO) database, including that of 25 patients with LDH and 25 healthy volunteers. After merging the two microarray datasets, Differentially Expressed Genes (DEGs) were screened, and a functional correlation analysis was performed. The Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression algorithm and support vector machine recursive feature elimination (SVM-RFE) were applied to identify diagnostic biomarkers by a cross-validation method. Then, the GSE42611 dataset was used as a validation dataset to detect the expression level of these diagnostic biomarkers in the nucleus pulposus and evaluate their accuracy. The hub genes in the network were identified by the CIBERSORT tool and the Weighted Gene Coexpression Network Analysis (WGCNA). A Spearman correlation analysis between diagnostic markers and infiltrating immune cells was conducted to further illustrate the molecular immune mechanism of LDH. Results: The azurophil granule and the systemic lupus erythematosus pathway were significantly different between the healthy group and the LDH group after gene enrichment analysis. The XLOC_l2_012836, lnc-FGD3-1, and scavenger receptor class A member 5 were correlated with the immune cell infiltration in various degrees. In addition, five hub genes that correlated with LDH were identified, including AQP9, SIRPB2, SLC16A3, LILRB3, and HSPA6. Conclusion: The XLOC_l2_012836, lnc-FGD3-1, and SCARA5 might be adopted for the early diagnosis of LDH. The five identified hub genes might have similar pathological mechanisms that contribute to the degeneration of the lumbar disc. The identified hub genes and immune infiltrating pattern extend the knowledge on the potential functioning mechanisms, which offer guidance for the development of therapeutic targets of LDH.

19.
Front Neurol ; 13: 766622, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295836

RESUMEN

Objectives: To investigate the proactive and reactive control process when executing a complex task in patients with stroke. Proactive control is the preparatory process before the target stimulus, whereas reactive control is an imperative resolution of interference after the target stimulus. Methods: In total, 17 patients with chronic stroke and 17 healthy individuals were recruited. The proactive and reactive control of executive function was assessed by the task-switching paradigm and the AX version of the Continuous Performance Task (AX-CPT). The general executive function was assessed by Color Trial Test (CTT) and Stroop Test. The behavioral data of the task-switching paradigm were analyzed by a three-way repeated-measures ANOVA, and the AX-CPT data were analyzed by two-way repeated-measures ANOVA. Results: For efficiency scores in the task-switching paradigm, trial (repeat vs. switch) × group (stroke or control group) interaction effect was significant. Post-hoc analysis on trial × group effect showed a significant between-trial difference in accuracy rates in the repeat trial in the control group regardless of 100 or 50% validity. For the AX-CPT, the main effects of condition and group on response time were statistically significant. The interaction effect of condition (AY or BX) × group (stroke or control group) was also significant. Post-hoc analysis for condition × group indicated that the stroke group had a significantly longer response time in the BX condition than the control group and longer completion time in CTT2 and larger word interference for completion time in the Stroop test than the control cohort. Conclusions: Post-stroke survivors showed deficits in the performance of proactive control but not in the performance of reactive control. Deficits in proactive control may be related to the impairment of working memory. Interventions that focus on proactive control may result in improved clinical outcomes.

20.
Pain Res Manag ; 2022: 4276175, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35345623

RESUMEN

Background: Cognitive-behavioral therapy (CBT) is commonly adopted in pain management programs for patients with chronic low back pain (CLBP). However, the benefits of CBT are still unclear. Objectives: This review investigated the effectiveness of CBT on pain, disability, fear avoidance, and self-efficacy in patients with CLBP. Methods: Databases including PubMed, EMBASE, Web of Science, Cochrane Library, and PsycINFO were searched. RCTs examining the effects of CBT in adults with CLBP were included. The data about the outcome of pain, disability, fear avoidance, and self-efficacy were retained. Subgroup analysis about the effects of CBT on posttreatment was conducted according to CBT versus control groups (waiting list/usual care, active therapy) and concurrent CBT versus CBT alone. A random-effects model was used, and statistical heterogeneity was explored. Results: 22 articles were included. The results indicated that CBT was superior to other therapies in improving disability (SMD -0.44, 95% CI -0.71 to -0.17, P < 0.05), pain (SMD -0.32, 95% CI -0.57 to -0.06, P < 0.05), fear avoidance (SMD -1.24, 95% CI -2.25 to -0.23, P < 0.05), and self-efficacy (SMD 0.27, 95% CI 0.15 to 0.40, P < 0.05) after intervention. No different effect was observed between CBT and other therapies in all the follow-up terms. Subgroup analysis suggested that CBT in conjunction with other interventions was in favor of other interventions alone to reduce pain and disability (P < 0.05). Conclusion: CBT is beneficial in patients with CLBP for improving pain, disability, fear avoidance, and self-efficacy in CLBP patients. Further study is recommended to investigate the long-term benefits of CBT. This meta-analysis is registered with Prospero (registration number CRD42021224837).


Asunto(s)
Terapia Cognitivo-Conductual , Dolor de la Región Lumbar , Adulto , Terapia Cognitivo-Conductual/métodos , Miedo , Humanos , Dolor de la Región Lumbar/psicología , Dolor de la Región Lumbar/terapia , Manejo del Dolor/métodos , Autoeficacia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA