Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 409
Filtrar
1.
NPJ Genom Med ; 9(1): 39, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103426

RESUMEN

The tissues of origin of plasma DNA can be revealed by methylation patterns. However, the relative DNA contributions from megakaryocytes and erythroblasts into plasma appeared inconsistent among studies. To shed light into this phenomenon, we developed droplet digital PCR (ddPCR) assays for the differential detection of contributions from these cell types in plasma based on megakaryocyte-specific and erythroblast-specific methylation markers. Megakaryocytic DNA and erythroid DNA contributed a median of 44.2% and 6.2% in healthy individuals, respectively. Patients with idiopathic thrombocytopenic purpura had a significantly higher proportion of megakaryocytic DNA in plasma compared to healthy controls (median: 59.9% versus 44.2%; P = 0.03). Similarly, patients with ß-thalassemia were shown to have higher proportions of plasma erythroid DNA compared to healthy controls (median: 50.9% versus 6.2%) (P < 0.0001). Hence, the concurrent analysis of megakaryocytic and erythroid lineage-specific markers could facilitate the dissection of their relative contributions and provide information on patients with hematological disorders.

2.
Clin Chem ; 70(8): 1046-1055, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38873917

RESUMEN

BACKGROUND: The analysis of haplotypes of variants is important for pharmacogenomics analysis and noninvasive prenatal testing for monogenic diseases. However, there is a lack of robust methods for targeted haplotyping. METHODS: We developed digital PCR haplotype sequencing (dHapSeq) for targeted haplotyping of variants, which is a method that compartmentalizes long DNA molecules into droplets. Within one droplet, 2 target regions are PCR amplified from one template molecule, and their amplicons are fused together. The fused products are then sequenced to determine the phase relationship of the single nucleotide polymorphism (SNP) alleles. The entire haplotype of 10s of SNPs can be deduced after the phase relationship of individual SNPs are determined in a pairwise manner. We applied dHapSeq to noninvasive prenatal testing in 4 families at risk for thalassemia and utilized it to detect NUDT15 diplotypes for predicting drug tolerance in pediatric acute lymphoblastic leukemia (72 cases and 506 controls). RESULTS: For SNPs within 40 kb, phase relation can be determined with 100% accuracy. In 7 trio families, the haplotyping results for 97 SNPs spanning 185 kb determined by dHapSeq were concordant with the results deduced from the genotypes of both parents and the fetus. In 4 thalassemia families, a 19.3-kb Southeast Asian deletion was successfully phased with 97 downstream SNPs, enabling noninvasive determination of fetal inheritance using relative haplotype dosage analysis. In the NUDT15 analysis, the variant status and phase of the variants were successfully determined in all cases and controls. CONCLUSIONS: The dHapSeq represents a robust and scalable haplotyping approach with numerous clinical and research applications.


Asunto(s)
Haplotipos , Pruebas Prenatales no Invasivas , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Humanos , Reacción en Cadena de la Polimerasa/métodos , Femenino , Pruebas Prenatales no Invasivas/métodos , Embarazo , Pruebas de Farmacogenómica/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Análisis de Secuencia de ADN/métodos , Talasemia/genética , Talasemia/diagnóstico
5.
Genome Res ; 34(2): 189-200, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38408788

RESUMEN

Recent studies have revealed an unexplored population of long cell-free DNA (cfDNA) molecules in human plasma using long-read sequencing technologies. However, the biological properties of long cfDNA molecules (>500 bp) remain largely unknown. To this end, we have investigated the origins of long cfDNA molecules from different genomic elements. Analysis of plasma cfDNA using long-read sequencing reveals an uneven distribution of long molecules from across the genome. Long cfDNA molecules show overrepresentation in euchromatic regions of the genome, in sharp contrast to short DNA molecules. We observe a stronger relationship between the abundance of long molecules and mRNA gene expression levels, compared with short molecules (Pearson's r = 0.71 vs. -0.14). Moreover, long and short molecules show distinct fragmentation patterns surrounding CpG sites. Leveraging the cleavage preferences surrounding CpG sites, the combined cleavage ratios of long and short molecules can differentiate patients with hepatocellular carcinoma (HCC) from non-HCC subjects (AUC = 0.87). We also investigated knockout mice in which selected nuclease genes had been inactivated in comparison with wild-type mice. The proportion of long molecules originating from transcription start sites are lower in Dffb-deficient mice but higher in Dnase1l3-deficient mice compared with that of wild-type mice. This work thus provides new insights into the biological properties and potential clinical applications of long cfDNA molecules.


Asunto(s)
Carcinoma Hepatocelular , Ácidos Nucleicos Libres de Células , Neoplasias Hepáticas , Humanos , Animales , Ratones , Ácidos Nucleicos Libres de Células/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , ADN/genética , Genómica , Ratones Noqueados , Endodesoxirribonucleasas/genética
6.
Hypertension ; 81(4): 876-886, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38362745

RESUMEN

BACKGROUND: The relationship between placental pathology and the maternal syndrome of preeclampsia is incompletely characterized. Mismatch between placental nutrient supply and fetal demands induces stress in the syncytiotrophoblast, the layer of placenta in direct contact with maternal blood. Such stress alters the content and increases the release of syncytiotrophoblast extracellular vesicles (STB-EVs) into the maternal circulation. We have previously shown 5'-tRNA fragments (5'-tRFs) constitute the majority of small RNA in STB-EVs in healthy pregnancy. 5'-tRFs are produced in response to stress. We hypothesized STB-EV 5'-tRF release might change in preeclampsia. METHODS: We perfused placentas from 8 women with early-onset preeclampsia and 6 controls, comparing small RNA expression in STB-EVs. We used membrane-affinity columns to isolate maternal plasma vesicles and investigate placental 5'-tRFs in vivo. We quantified 5'-tRFs from circulating STB-EVs using a placental alkaline phosphatase immunoassay. 5'-tRFs and scrambled RNA controls were added to monocyte, macrophage and endothelial cells in culture to investigate transcriptional responses. RESULTS: 5'-tRFs constitute the majority of small RNA in STB-EVs from both preeclampsia and normal pregnancies. More than 900 small RNA fragments are differentially expressed in preeclampsia STB-EVs. Preeclampsia-dysregulated 5'-tRFs are detectable in maternal plasma, where we identified a placentally derived load. 5'-tRF-Glu-CTC, the most abundant preeclampsia-upregulated 5'-tRF in perfusion STB-EVs, is also increased in preeclampsia STB-EVs from maternal plasma. 5'-tRF-Glu-CTC induced inflammation in macrophages but not monocytes. The conditioned media from 5'-tRF-Glu-CTC-activated macrophages reduced eNOS (endothelial NO synthase) expression in endothelial cells. CONCLUSIONS: Increased release of syncytiotrophoblast-derived vesicle-bound 5'-tRF-Glu-CTC contributes to preeclampsia pathophysiology.


Asunto(s)
Vesículas Extracelulares , Preeclampsia , Embarazo , Femenino , Humanos , Placenta/metabolismo , Células Endoteliales/metabolismo , Trofoblastos/metabolismo , Vesículas Extracelulares/metabolismo , ARN de Transferencia/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo
7.
Prenat Diagn ; 43(11): 1385-1393, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37655424

RESUMEN

OBJECTIVE: Long cell-free DNA (cfDNA) can be found in the plasma of pregnant women and cancer patients. We investigated if droplet digital PCR (ddPCR) can analyze such molecules for diagnostic purposes using preeclampsia as a model. METHOD: Plasma samples from ten preeclamptic and sixteen normal pregnancies were analyzed. Two ddPCR assays targeting a single-copy gene, VCP, and one ddPCR assay targeting LINE-1 repetitive regions were used to measure the percentages of long cfDNA >533, 1001, and 170 bp, respectively. The LINE-1 assay was developed as guided by in silico PCR analyses to better differentiate preeclamptic and normal pregnancies. RESULTS: Preeclamptic patients had a significantly lower median percentage of long cfDNA than healthy pregnant controls, as determined by the LINE-1 170 bp assay (28.9% vs. 35.1%, p < 0.0001) and the VCP 533 bp assay (6.6% vs. 8.7%, p = 0.014). The LINE-1 assay provided a better differentiation than the VCP 533 bp assay (area under ROC curves, 0.94 vs. 0.79). CONCLUSION: ddPCR is a cost-effective approach for unlocking diagnostic information carried by long cfDNA in plasma and may have applications for the detection of preeclampsia. Further longitudinal studies with larger cohorts are required to assess the clinical utility of this test.

8.
Mol Diagn Ther ; 27(5): 563-571, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37474843

RESUMEN

Liquid biopsy using cell-free DNA (cfDNA) has gained global interest as a molecular diagnostic tool. However, the analysis of cfDNA in cancer patients and pregnant women has been focused on short DNA molecules (e.g., ≤ 600 bp). With the detection of long cfDNA in the plasma of pregnant women and cancer patients in two recent studies, a new avenue of long cfDNA-based liquid biopsy has been opened. In this review, we summarize our current knowledge in this nascent field of long cfDNA analysis, focusing on the fragmentomic and epigenetic features of long cfDNA. In particular, long-read sequencing enabled single-molecule methylation analysis and subsequent determination of the tissue-of-origin of long cfDNA, which has promising clinical potential in prenatal and cancer testing. We also examine some of the limitations that may hinder the immediate clinical applications of long cfDNA analysis and the current efforts involved in addressing them. With concerted efforts in this area, it is hoped that long cfDNA analysis will add to the expanding armamentarium of liquid biopsy.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias , Humanos , Femenino , Embarazo , Biopsia Líquida , Neoplasias/diagnóstico , Neoplasias/genética , ADN/genética , Metilación de ADN
9.
Proc Natl Acad Sci U S A ; 120(17): e2220982120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37075072

RESUMEN

Cell-free DNA (cfDNA) fragmentation is nonrandom, at least partially mediated by various DNA nucleases, forming characteristic cfDNA end motifs. However, there is a paucity of tools for deciphering the relative contributions of cfDNA cleavage patterns related to underlying fragmentation factors. In this study, through non-negative matrix factorization algorithm, we used 256 5' 4-mer end motifs to identify distinct types of cfDNA cleavage patterns, referred to as "founder" end-motif profiles (F-profiles). F-profiles were associated with different DNA nucleases based on whether such patterns were disrupted in nuclease-knockout mouse models. Contributions of individual F-profiles in a cfDNA sample could be determined by deconvolutional analysis. We analyzed 93 murine cfDNA samples of different nuclease-deficient mice and identified six types of F-profiles. F-profiles I, II, and III were linked to deoxyribonuclease 1 like 3 (DNASE1L3), deoxyribonuclease 1 (DNASE1), and DNA fragmentation factor subunit beta (DFFB), respectively. We revealed that 42.9% of plasma cfDNA molecules were attributed to DNASE1L3-mediated fragmentation, whereas 43.4% of urinary cfDNA molecules involved DNASE1-mediated fragmentation. We further demonstrated that the relative contributions of F-profiles were useful to inform pathological states, such as autoimmune disorders and cancer. Among the six F-profiles, the use of F-profile I could inform the human patients with systemic lupus erythematosus. F-profile VI could be used to detect individuals with hepatocellular carcinoma, with an area under the receiver operating characteristic curve of 0.97. F-profile VI was more prominent in patients with nasopharyngeal carcinoma undergoing chemoradiotherapy. We proposed that this profile might be related to oxidative stress.


Asunto(s)
Ácidos Nucleicos Libres de Células , Humanos , Ratones , Animales , Ácidos Nucleicos Libres de Células/genética , Desoxirribonucleasas/genética , Ratones Noqueados , Endonucleasas/genética , Fragmentación del ADN , Endodesoxirribonucleasas/genética
10.
Clin Chem ; 69(2): 168-179, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36322427

RESUMEN

BACKGROUND: Recent studies using single molecule, real-time (SMRT) sequencing revealed a substantial population of analyzable long cell-free DNA (cfDNA) in plasma. Potential clinical utilities of such long cfDNA in pregnancy and cancer have been demonstrated. However, the performance of different long-read sequencing platforms for the analysis of long cfDNA remains unknown. METHODS: Size biases of SMRT sequencing by Pacific Biosciences (PacBio) and nanopore sequencing by Oxford Nanopore Technologies (ONT) were evaluated using artificial mixtures of sonicated human and mouse DNA of different sizes. cfDNA from plasma samples of pregnant women at different trimesters, hepatitis B carriers, and patients with hepatocellular carcinoma were sequenced with the 2 platforms. RESULTS: Both platforms showed biases to sequence longer (1500 bp vs 200 bp) DNA fragments, with PacBio showing a stronger bias (5-fold overrepresentation of long fragments vs 2-fold in ONT). Percentages of cfDNA fragments 500 bp were around 6-fold higher in PacBio compared with ONT. End motif profiles of cfDNA from PacBio and ONT were similar, yet exhibited platform-dependent patterns. Tissue-of-origin analysis based on single-molecule methylation patterns showed comparable performance on both platforms. CONCLUSIONS: SMRT sequencing generated data with higher percentages of long cfDNA compared with nanopore sequencing. Yet, a higher number of long cfDNA fragments eligible for the tissue-of-origin analysis could be obtained from nanopore sequencing due to its much higher throughput. When analyzing the size and end motif of cfDNA, one should be aware of the analytical characteristics and possible biases of the sequencing platforms being used.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias Hepáticas , Secuenciación de Nanoporos , Humanos , Femenino , Embarazo , Animales , Ratones , Ácidos Nucleicos Libres de Células/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , ADN/genética
11.
Clin Chem ; 69(2): 189-201, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36576350

RESUMEN

BACKGROUND: Nuclear-derived cell-free DNA (cfDNA) molecules in blood plasma are nonrandomly fragmented, bearing a wealth of information related to tissues of origin. DNASE1L3 (deoxyribonuclease 1 like 3) is an important player in shaping the fragmentation of nuclear-derived cfDNA molecules, preferentially generating molecules with 5 CC dinucleotide termini (i.e., 5 CC-end motif). However, the fragment end properties of microbial cfDNA and its clinical implication remain to be explored. METHODS: We performed end motif analysis on microbial cfDNA fragments in plasma samples from patients with sepsis. A sequence context-based normalization method was used to minimize the potential biases for end motif analysis. RESULTS: The end motif profiles of microbial cfDNA appeared to resemble that of nuclear cfDNA (Spearman correlation coefficient: 0.82, P value 0.001). The CC-end motif was the most preferred end motif in microbial cfDNA, suggesting that DNASE1L3 might also play a role in the fragmentation of microbe-derived cfDNA in plasma. Of note, differential end motifs were present between microbial cfDNA originating from infection-causing pathogens (enriched at the CC-end) and contaminating microbial DNA potentially derived from reagents or the environment (nearly random). The use of fragment end signatures allowed differentiation between confirmed pathogens and contaminating microbes, with an area under the receiver operating characteristic curve of 0.99. The performance appeared to be superior to conventional analysis based on microbial cfDNA abundance alone. CONCLUSIONS: The use of fragmentomic features could facilitate the differentiation of underlying contaminating microbes from true pathogens in sepsis. This work demonstrates the potential usefulness of microbial cfDNA fragmentomics in metagenomics analysis.


Asunto(s)
Ácidos Nucleicos Libres de Células , Sepsis , Humanos , ADN/genética , Sepsis/diagnóstico , Fragmentación del ADN
12.
NEJM Evid ; 2(7): EVIDoa2200309, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38320164

RESUMEN

BACKGROUND: We previously conducted a prospective study to show that nasopharyngeal cancer (NPC) screening with circulating Epstein­Barr virus (EBV) DNA analysis can improve survival. However, the long-term significance of positive results in individuals without cancer was unclear. METHODS: We conducted a second-round screening at a median of 43 months after the initial screening. Participants with detectable plasma EBV DNA were retested in 4 weeks, and those with persistently positive results were investigated with nasal endoscopy and magnetic resonance imaging. RESULTS: Of the 20,174 volunteers who participated in the first-round screening, 17,838 (88.6%) were rescreened. Among them, 423 (2.37%) had persistently detectable plasma EBV DNA. Twenty-four patients were identified as having NPC. A significantly higher proportion of patients had stage I/II cancer than in a historical cohort (67% vs. 20%; chi-square test, P<0.001), and they had superior 3-year progression-free survival (100% vs. 78.8%). Compared with participants with undetectable plasma EBV DNA in the first round of screening, participants with transiently and persistently positive results in the first round were more likely to have a cancer identified in the second round, with relative risks of 4.4 (95% confidence interval, 1.3 to 15.0) and 16.8 (95% confidence interval, 5.7 to 49.6), respectively. CONCLUSIONS: Individuals with detectable plasma EBV DNA but without an immediately identifiable NPC were more likely to have the cancer identified in another round of screening performed 3 to 5 years later. (Funded by Kadoorie Charitable Foundation and others; ClinicalTrials.gov number, NCT02063399.)


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/diagnóstico , Herpesvirus Humano 4/genética , Pronóstico , ADN Viral
13.
Proc Natl Acad Sci U S A ; 119(44): e2209852119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36288287

RESUMEN

Cell-free DNA (cfDNA) fragmentation patterns contain important molecular information linked to tissues of origin. We explored the possibility of using fragmentation patterns to predict cytosine-phosphate-guanine (CpG) methylation of cfDNA, obviating the use of bisulfite treatment and associated risks of DNA degradation. This study investigated the cfDNA cleavage profile surrounding a CpG (i.e., within an 11-nucleotide [nt] window) to analyze cfDNA methylation. The cfDNA cleavage proportion across positions within the window appeared nonrandom and exhibited correlation with methylation status. The mean cleavage proportion was ∼twofold higher at the cytosine of methylated CpGs than unmethylated ones in healthy controls. In contrast, the mean cleavage proportion rapidly decreased at the 1-nt position immediately preceding methylated CpGs. Such differential cleavages resulted in a characteristic change in relative presentations of CGN and NCG motifs at 5' ends, where N represented any nucleotide. CGN/NCG motif ratios were correlated with methylation levels at tissue-specific methylated CpGs (e.g., placenta or liver) (Pearson's absolute r > 0.86). cfDNA cleavage profiles were thus informative for cfDNA methylation and tissue-of-origin analyses. Using CG-containing end motifs, we achieved an area under a receiver operating characteristic curve (AUC) of 0.98 in differentiating patients with and without hepatocellular carcinoma and enhanced the positive predictive value of nasopharyngeal carcinoma screening (from 19.6 to 26.8%). Furthermore, we elucidated the feasibility of using cfDNA cleavage patterns to deduce CpG methylation at single CpG resolution using a deep learning algorithm and achieved an AUC of 0.93. FRAGmentomics-based Methylation Analysis (FRAGMA) presents many possibilities for noninvasive prenatal, cancer, and organ transplantation assessment.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias Hepáticas , Embarazo , Femenino , Humanos , Ácidos Nucleicos Libres de Células/genética , Biomarcadores de Tumor/genética , Metilación de ADN , Neoplasias Hepáticas/genética , Epigénesis Genética , ADN/genética , Citosina , Guanina , Nucleótidos , Fosfatos
15.
Elife ; 112022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36098684

RESUMEN

Physician-scientists have epitomized the blending of deep, rigorous impactful curiosity with broad attention to human health for centuries. While we aspire to prepare all physicians with an appreciation for these skills, those who apply them to push the understanding of the boundaries of human physiology and disease, to advance treatments, and to increase our knowledge base in the arena of human health can fulfill an essential space for our society, economies, and overall well-being. Working arm in arm with basic and translational scientists as well as expert clinicians, as peers in both groups, this career additionally serves as a bridge to facilitate the pace and direction of research that ultimately impacts health. Globally, there are remarkable similarities in challenges in this career path, and in the approaches employed to overcome them. Herein, we review how different countries train physician-scientists and suggest strategies to further bolster this career path.


Asunto(s)
Investigación Biomédica , Médicos , Investigación Biomédica/educación , Selección de Profesión , Humanos
16.
PLoS Genet ; 18(7): e1010262, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35793278

RESUMEN

Urinary cell-free DNA (ucfDNA) is a potential biomarker for bladder cancer detection. However, the biological characteristics of ucfDNA are not well understood. We explored the roles of deoxyribonuclease 1 (DNASE1) and deoxyribonuclease 1-like 3 (DNASE1L3) in the fragmentation of ucfDNA using mouse models. The deletion of Dnase1 in mice (Dnase1-/-) caused aberrations in ucfDNA fragmentation, including a 24-fold increase in DNA concentration, and a 3-fold enrichment of long DNA molecules, with a relative decrease of fragments with thymine ends and reduction of jaggedness (i.e., the presence of single-stranded protruding ends). In contrast, such changes were not observed in mice with Dnase1l3 deletion (Dnase1l3-/-). These results suggested that DNASE1 was an important nuclease contributing to the ucfDNA fragmentation. Western blot analysis revealed that the concentration of DNASE1 protein was higher in urine than DNASE1L3. The native-polyacrylamide gel electrophoresis zymogram showed that DNASE1 activity in urine was higher than that in plasma. Furthermore, the proportion of ucfDNA fragment ends within DNase I hypersensitive sites (DHSs) was significantly increased in Dnase1-deficient mice. In humans, patients with bladder cancer had lower proportions of ucfDNA fragment ends within the DHSs when compared with participants without bladder cancer. The area under the curve (AUC) for differentiating patients with and without bladder cancer was 0.83, suggesting the analysis of ucfDNA fragmentation in the DHSs may have potential for bladder cancer detection. This work revealed the intrinsic links between the nucleases in urine and ucfDNA fragmentomics.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias de la Vejiga Urinaria , Animales , Ácidos Nucleicos Libres de Células/genética , ADN/genética , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , Endodesoxirribonucleasas/genética , Endonucleasas , Humanos , Ratones , Ratones Noqueados , Neoplasias de la Vejiga Urinaria/genética
17.
Nat Rev Gastroenterol Hepatol ; 19(10): 670-681, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35676420

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal causes of cancer-related death worldwide. The treatment of HCC remains challenging and is largely predicated on early diagnosis. Surveillance of high-risk groups using abdominal ultrasonography, with or without serum analysis of α-fetoprotein (AFP), can permit detection of early, potentially curable tumours, but is limited by its insensitivity. Reviewed here are two current approaches that aim to address this limitation. The first is to use old re-emerged empirically derived biomarkers such as AFP, now applied within statistical models. The second is to use circulating nucleic acid biomarkers, which include cell-free DNA (for example, circulating tumour DNA, cell-free mitochondrial DNA and cell-free viral DNA) and cell-free RNA, applying modern molecular biology-based technologies and machine learning techniques closely allied to the underlying biology of cancer. Taken together, these approaches are likely to be complementary. Both hold considerable promise for achieving earlier diagnosis as well as offering additional functionalities including improved monitoring of therapy and prediction of response thereto.


Asunto(s)
Carcinoma Hepatocelular , ADN Tumoral Circulante , Neoplasias Hepáticas , Biomarcadores , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , ADN Mitocondrial , ADN Viral , Detección Precoz del Cáncer/métodos , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , alfa-Fetoproteínas
18.
Clin Chem ; 68(7): 917-926, 2022 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-35587043

RESUMEN

BACKGROUND: Jagged ends of plasma DNA are a recently recognized class of fragmentomic markers for cell-free DNA, reflecting the activity of nucleases. A number of recent studies have also highlighted the importance of jagged ends in the context of pregnancy and oncology. However, knowledge regarding the generation of jagged ends is incomplete. METHODS: Jaggedness of plasma DNA was analyzed based on Jag-seq, which utilized the differential methylation signals introduced by the DNA end-repair process. We investigated the jagged ends in plasma DNA using mouse models by deleting the deoxyribonuclease 1 (Dnase1), DNA fragmentation factor subunit beta (Dffb), or deoxyribonuclease 1 like 3 (Dnase1l3) gene. RESULTS: Aberrations in the profile of plasma DNA jagged ends correlated with the type of nuclease that had been genetically deleted, depending on nucleosomal structures. The deletion of Dnase1l3 led to a significant reduction of jaggedness for those plasma DNA molecules involving more than 1 nucleosome (e.g., size ranges 240-290 bp, 330-380 bp, and 420-470 bp). However, less significant effects of Dnase1 and Dffb deletions were observed regarding different sizes of DNA fragments. Interestingly, the aberration in plasma DNA jagged ends related to multinucleosomes was observed in human subjects with familial systemic lupus erythematosus with Dnase1l3 deficiency and human subjects with sporadic systemic lupus erythematosus. CONCLUSIONS: Detailed understanding of the relationship between nuclease and plasma DNA jaggedness has opened up avenues for biomarker development.


Asunto(s)
Ácidos Nucleicos Libres de Células , Lupus Eritematoso Sistémico , Animales , Biomarcadores , Ácidos Nucleicos Libres de Células/genética , ADN/genética , Desoxirribonucleasas/genética , Endodesoxirribonucleasas/genética , Femenino , Humanos , Lupus Eritematoso Sistémico/genética , Ratones , Nucleosomas/genética , Embarazo
19.
Clin Chem ; 68(9): 1151-1163, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35587130

RESUMEN

BACKGROUND: Analysis of circulating tumor DNA has become increasingly important as a tool for cancer care. However, the focus of previous studies has been on short fragments of DNA. Also, bisulfite sequencing, a conventional approach for methylation analysis, causes DNA degradation, which is not ideal for the assessment of long DNA properties and methylation patterns. This study attempted to overcome such obstacles by single-molecule sequencing. METHODS: Single-molecule real-time (SMRT) sequencing was used to sequence plasma DNA. We performed fragment size and direct methylation analysis for each molecule. A methylation score concerning single-molecule methylation patterns was used for cancer detection. RESULTS: A substantial proportion of plasma DNA was longer than 1 kb with a median of 16% in hepatocellular carcinoma (HCC) patients, hepatitis B virus carriers, and healthy individuals. The longest plasma DNA molecule in the HCC patients was 39.8 kb. Tumoral cell-free DNA (cfDNA) was generally shorter than nontumoral cfDNA. The longest tumoral cfDNA was 13.6 kb. Tumoral cfDNA had lower methylation levels compared with nontumoral cfDNA (median: 59.3% vs 76.9%). We developed and analyzed a metric reflecting single-molecule methylation patterns associated with cancer, named the HCC methylation score. HCC patients displayed significantly higher HCC methylation scores than those without HCC. Interestingly, compared to using short cfDNA (area under the receiver operating characteristic [ROC] curve, AUC: 0.75), the use of long cfDNA molecules greatly enhanced the discriminatory power (AUC: 0.91). CONCLUSIONS: A previously unidentified long cfDNA population was revealed in cancer patients. The presence and direct methylation analysis of these molecules open new possibilities for cancer liquid biopsy.


Asunto(s)
Carcinoma Hepatocelular , Ácidos Nucleicos Libres de Células , Neoplasias Hepáticas , Biomarcadores de Tumor , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Ácidos Nucleicos Libres de Células/genética , ADN , Metilación de ADN , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética
20.
Ann Oncol ; 33(8): 794-803, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35491007

RESUMEN

BACKGROUND: Quantitative measurement of plasma Epstein-Barr virus (EBV) DNA by real-time PCR at the end of primary treatment is a robust prognostic marker for nasopharyngeal carcinoma (NPC) patients. However, up to 40% of patients who would later develop disease recurrence had undetectable post-treatment plasma EBV DNA. Targeted sequencing for the entire EBV genome potentially allows a more comprehensive and unbiased detection of plasma EBV DNA and enables the use of other parameters such as fragment size as biomarkers. Hence, we explored if plasma EBV DNA sequencing might allow more accurate prognostication of NPC patients. PATIENTS AND METHODS: Plasma samples collected from 769 patients with stage IIB-IVB NPC at 6-8 weeks after radiotherapy were analysed using targeted sequencing for EBV DNA. RESULTS: The sensitivities of the PCR-based analysis, at a cut-off of any detectable levels of plasma EBV DNA, for prediction of local and distant recurrences were 42.3% and 85.3%, respectively. The sequencing-based analysis (involving quantitation and size profiling) achieved better performance for both local and distant recurrences than PCR. Using a cut-off of the proportion of plasma EBV DNA deduced by sequencing at 0.01%, the sensitivities of the sequencing-based analysis for local and distant recurrences were 88.5% and 97.1%, with the resultant negative predictive values of 99.1% and 99.4%, respectively. Among patients with undetectable EBV DNA on quantitative PCR, sequencing could further define a subgroup that enjoyed superior survival outcomes based on the proportion of plasma EBV DNA, with a 5-year progression-free survival (PFS) approaching 90%. On multivariate analysis, sequencing-based quantitative level of plasma EBV DNA was the independent prognostic factor with the highest hazard ratio for prediction of overall survival and PFS. CONCLUSION: NPC prognostication using post-treatment plasma EBV DNA could be enhanced through sequencing.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , ADN Viral/genética , Herpesvirus Humano 4/genética , Humanos , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/terapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/terapia , Recurrencia Local de Neoplasia/genética , Pronóstico , Reacción en Cadena en Tiempo Real de la Polimerasa , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA