Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 175: 116660, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38701563

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has an extremely devastating nature with poor prognosis and increasing incidence, making it a formidable challenge in the global fight against cancer-related mortality. In this innovative preclinical investigation, the VCP/p97 inhibitor CB-5083 (CB), miR-142, a PD-L1 inhibitor, and immunoadjuvant resiquimod (R848; R) were synergistically encapsulated in solid lipid nanoparticles (SLNs). These SLNs demonstrated features of peptides targeting PD-L1, EGFR, and the endoplasmic reticulum, enclosed in a pH-responsive polyglutamic (PGA)-polyethylene glycol (PEG) shell. The homogeneous size and zeta potential of the nanoparticles were stable for 28 days at 4°C. The study substantiated the concurrent modulation of key pathways by the CB, miR, and R-loaded nanoformulation, prominently affecting VCP/Bip/ATF6, PD-L1/TGF-ß/IL-4, -8, -10, and TNF-α/IFN-γ/IL-1, -12/GM-CSF/CCL4 pathways. This adaptable nanoformulation induced durable antitumor immune responses and inhibited Panc-02 tumor growth by enhancing T cell infiltration, dendritic cell maturation, and suppressing Tregs and TAMs in mice bearing Panc-02 tumors. Furthermore, tissue distribution studies, biochemical assays, and histological examinations highlighted enhanced safety with PGA and peptide-modified nanoformulations for CB, miR, and/or R in Panc-02-bearing mice. This versatile nanoformulation allows tailored adjustment of the tumor microenvironment, thereby optimizing the localized delivery of combined therapy. These compelling findings advocate the potential development of a pH-sensitive, three-in-one PGA-PEG nanoformulation that combines a VCP inhibitor, a PD-L1 inhibitor, and an immunoadjuvant for cancer treatment via combinatorial chemo-immunotherapy.

2.
Int J Biol Macromol ; 254(Pt 2): 127905, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939778

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a significant obstacle to lowering global cancer deaths. CB-5083, a novel valosin-containing protein (VCP)/p97 inhibitor that disrupts proteasomal degradation and induces endoplasmic reticulum stress (ERS) accumulation, was evaluated as an inducer of immunogenic cell death (ICD) in PDAC treatment. Furthermore, miR-142 enhances checkpoint blockade and promotes M1 repolarization, while Toll-like receptor 7/8 agonist resiquimod (R) acts as an immunoadjuvant to amplify the immune response to miR-142. This research signifies the first integration of CB, miR-142, and R in solid lipid nanoparticles (SLNs) modified with peptides targeting PD-L1, EGFR, and ER, which were shelled by the PEG-polyglutamic (PGA) coating that detaches in response to the acidic pH values in the tumor microenvironment (TME). The modified SLNs exhibited pH-sensitive cytotoxicity against Panc-02 cells, preserving normal cells and preventing hemolysis. The innovative approach simultaneously modulated pathways, including VCP/Bip/K48-Ub/ATF6, IRE1α/XBPs/LC3II, PD-L1/TGF-ß/IL-10/CD206/MSR1/Arg1, and TNF-α/IFN-γ/IL-6/iNOS/COX-2. Combined treatment blocked VCP, arrested the cell cycle, inhibited EMT, triggered ERS-mediated autophagy/apoptosis, and stimulated robust ICD via the release of damage-associated molecular patterns. This adaptable nanoformulation, displaying pH-sensitive PEG-PGA de-coating and precisely targeting EGFR, PD-L1, and ER, serves to hinder EMT and immune evasion, subsequently amplifying ICD in PDAC cells and the TME.


Asunto(s)
MicroARNs , Neoplasias Pancreáticas , Humanos , Antígeno B7-H1 , Adyuvantes Inmunológicos , Microambiente Tumoral , Endorribonucleasas , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés del Retículo Endoplásmico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Receptores ErbB , Línea Celular Tumoral
3.
J Nutr Biochem ; 122: 109457, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37797731

RESUMEN

Obesity is associated with accumulation of inflammatory immune cells in white adipose tissue, whereas thermogenic browning adipose tissue is inhibited. Dietary fatty acids are important nutritional components and several clinical and experimental studies have reported beneficial effects of docosahexaenoic acid (DHA) on obesity-related metabolic changes. In this study, we investigated effects of DHA on hepatic and adipose inflammation and adipocyte browning in high-fat diet-induced obese C57BL/6J mice, and in vitro 3T3-L1 preadipocyte differentiation. Since visceral white adipose tissue has a close link with metabolic abnormality, epididymal adipose tissue represents current target for evaluation. A course of 8-week DHA supplementation improved common phenotypes of obesity, including improvement of insulin resistance, inhibition of macrophage M1 polarization, and preservation of macrophage M2 polarization in hepatic and adipose tissues. Moreover, dysregulated adipokines and impaired thermogenic and browning molecules, considered obesogenic mechanisms, were improved by DHA, along with parallel alleviation of endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and mitochondrial DNA stress-directed innate immunity. During 3T3-L1 preadipocytes differentiation, DHA treatment decreased lipid droplet accumulation and increased the levels of thermogenic, browning, and mitochondrial biogenesis molecules. Our study provides experimental evidence that DHA mitigates obesity-associated inflammation and induces browning of adipose tissue in visceral epididymal adipose tissue. Since obesity is associated with metabolic abnormalities across tissues, our findings indicate that DHA may have potential as part of a dietary intervention to combat obesity.


Asunto(s)
Dieta Alta en Grasa , Ácidos Docosahexaenoicos , Ratones , Animales , Ácidos Docosahexaenoicos/metabolismo , Ratones Obesos , Dieta Alta en Grasa/efectos adversos , Tejido Adiposo Pardo/metabolismo , Ratones Endogámicos C57BL , Obesidad/metabolismo , Adipocitos , Tejido Adiposo Blanco/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Termogénesis
4.
Biomedicines ; 10(10)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36289868

RESUMEN

Our previous studies demonstrated that collapsin response mediator protein 2 (CRMP2) is associated with obesity and, in addition, that hyperglycemia-suppressed CRMP2 augments malignant traits of colorectal cancer and is associated with advanced tumor stage. Regulation of CRMP2 profile was further explored in this study using 3T3-L1 pre-adipocyte adipogenesis as a study model for illustrating the roles of CRMP2 in metabolic homeostasis. Hyperglycemia inhibited expression of CRMP2, adipogenic machinery and adipocyte markers. CRMP2 displayed f-CRMP2 (62~66 kDa) and s-CMRP2 (58 kDa) isoforms at the growth arrest phase. Expression of s-CRMP2 was coupled with the mitotic clonal expansion (MCE) phase to direct cell proliferation and rapidly down-regulated in post-mitotic cells. In the late differentiation phase, f-CRMP2 was co-localized with tubulin in the cortical area. Insulin-enhanced CRMP2-glucose transporter 4 (GLUT4) co-localization and CRMP2 puncta on lipid droplets (LDs) suggested participation of CRMP2 in GLUT4 translocation and LD fusion. Collectively, the CRMP2 functional profile must be finely controlled to adjust cytoskeletal stability for meeting dynamic cellular needs. Manipulating the s-CRMP2/f-CRMP2 ratio and thus the cytoskeleton dynamics is anticipated to improve glucose uptake and insulin sensitivity. In summary, our data provide molecular evidence explaining the functions of CRMP2 in physiological, pathological and disease progression in metabolic homeostasis and disorders related to metabolic abnormalities, including cancer.

5.
Acta Biomater ; 153: 465-480, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36115656

RESUMEN

Prospective tumor pH-responsive and charge-convertible nanoparticles have been utilized to reduce side effects and improve the active tumor-targeting ability and nuclear/cytoplasmic localization of chemo- and gene therapeutics for the treatment of head and neck cancer (HNC). Oxaliplatin (Oxa) is a third-generation platinum compound that prevents DNA replication. miR-320 may regulate cancer cell apoptosis, resistance, and progression. Innovative nanoparticles incorporating miR-320 and Oxa were modified with a ligand, cell-penetrating peptide, and nucleus-targeted peptide. The nanoparticles were coated with a charge/size-tunable shield to prevent peptide degradation and decoated at acidic tumor sites to expose peptides for active targeting. Results indicated that the designed nanoparticles exhibited a uniform size and satisfactory drug encapsulation efficiency. The nanoparticles displayed the pH-responsive release and uptake of Oxa and miR-320 into human tongue squamous carcinoma SAS cells. The nanoparticles successfully delivered Oxa and miR-320 to the nucleus and cytoplasm, respectively. This work is the first to demonstrate the concurrent intracellular modulation of the NRP1/Rac1, PI3K/Akt/mTOR, GSK-3ß/FOXM1/ß-catenin, P-gp/MRPs, KRAS/Erk/Oct4/Yap1, and N-cadherin/Vimentin/Slug pathways to inhibit the growth, progression, and multidrug resistance of cancer cells. In SAS-bearing mice, co-treatment with Oxa- and miR-320-loaded nanoparticles exhibited superior antitumor efficacy and remarkably decreased Oxa-associated toxicities. The nucleus/cytoplasm-localized nanoparticles with a tumor pH-sensitive and size/charge-adjustable coating may be a useful combinatorial spatiotemporal nanoplatform for nucleic acids and chemotherapeutics to achieve maximum therapeutic safety and efficacy against HNC. STATEMENT OF SIGNIFICANCE: Innovative nanoparticles incorporating miR-320 and oxaliplatin were modified with a ligand, cell-penetrating peptide, and nucleus-targeted peptide. The tumor pH-sensitive and charge/size-adjustable shield of polyglutamic acid-PEG protected against peptide degradation during systemic circulation. This work represents the first example of the concurrent intracellular modulation of the NRP1/Rac1, PI3K/Akt/mTOR, GSK-3ß/FOXM1/ß-catenin, P-gp/MRPs, KRAS/Erk/Oct4/Yap1, and N-cadherin/Vimentin/Slug pathways to inhibit cancer cell growth, cancer cell progression, and multidrug resistance simultaneously. The versatile nanoparticles with a tumor pH-functionalized coating could deliver chemotherapeutics and miRNA to the nucleus/cytoplasm. The nanoparticles successfully reduced chemotherapy-associated toxicities and maximized the antitumor efficacy of combinatorial therapy against head and neck cancer.


Asunto(s)
Péptidos de Penetración Celular , Neoplasias de Cabeza y Cuello , MicroARNs , Nanopartículas , Humanos , Ratones , Animales , Oxaliplatino/farmacología , MicroARNs/genética , beta Catenina , Vimentina , Glucógeno Sintasa Quinasa 3 beta , Péptidos de Penetración Celular/química , Proteínas Proto-Oncogénicas c-akt , Ligandos , Fosfatidilinositol 3-Quinasas , Estudios Prospectivos , Proteínas Proto-Oncogénicas p21(ras) , Concentración de Iones de Hidrógeno , Nanopartículas/química , Citoplasma , Serina-Treonina Quinasas TOR , Cadherinas , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos
6.
Pharmaceutics ; 14(9)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36145507

RESUMEN

Dysregulational EGFR, KRAS, and mTOR pathways cause metabolic reprogramming, leading to progression of gastric cancer. Afatinib (Afa) is a broad-spectrum tyrosine kinase inhibitor that reduces cancer growth by blocking the EGFR family. MicroRNA 125 (miR-125) reportedly diminishes EGFRs, glycolysis, and anti-apoptosis. Here, a one-shot formulation of miR-125 and Afa was presented for the first time. The formulation comprised solid lipid nanoparticles modified with mitochondrial targeting peptide and EGFR-directed ligand to suppress pan-ErbB-facilitated epithelial-mesenchymal transition and mTOR-mediated metabolism discoordination of glycolysis-glutaminolysis-lipids. Results showed that this cotreatment modulated numerous critical proteins, such as EGFR/HER2/HER3, Kras/ERK/Vimentin, and mTOR/HIF1-α/HK2/LDHA pathways of gastric adenocarcinoma AGS cells. The combinatorial therapy suppressed glutaminolysis, glycolysis, mitochondrial oxidative phosphorylation, and fatty acid synthesis. The cotreatment also notably decreased the levels of lactate, acetyl-CoA, and ATP. The active involvement of mitophagy supported the direction of promoting the apoptosis of AGS cells, which subsequently caused the breakdown of tumor-cell homeostasis and death. In vivo findings in AGS-bearing mice confirmed the superiority of the anti-tumor efficacy and safety of this combination nanomedicine over other formulations. This one-shot formulation disturbed the metabolic reprogramming; alleviated the "Warburg effect" of tumors; interrupted the supply of fatty acid, cholesterol, and triglyceride; and exacerbated the energy depletion in the tumor microenvironment, thereby inhibiting tumor proliferation and aggressiveness. Collectively, the results showed that the two-in-one nanoparticle formulation of miR-125 and Afa was a breakthrough in simplifying drug preparation and administration, as well as effectively inhibiting tumor progression through the versatile targeting of pan-ErbB- and mTOR-mediated mitochondrial dysfunction and dysregulated metabolism.

7.
Cells ; 11(4)2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35203376

RESUMEN

BACKGROUND: Common demographic risk factors are identified in colorectal cancer (CRC) and type 2 diabetes mellitus (DM), nevertheless, the molecular link and mechanism for CRC-DM comorbidity remain elusive. Dysregulated glycogen synthase kinase-3 beta under metabolic imbalance is suggested to accelerate CRC pathogenesis/progression via regulating collpasin response mediator protein-2 (CRMP2). Accordingly, roles of CRMP2 in CRC and CRC-DM patients were investigated for elucidating the molecular convergence of CRC and DM. METHODS: CRMP2 profile in tumor tissues from CRC and CRC-DM patients was investigated to explore the link between CRC and DM etiology. Meanwhile, molecular mechanism of glucose to regulate CRMP2 profile and CRC characteristics was examined in vitro and in vivo. RESULTS: CRMP2 was significantly lower in tumor lesions and associated with advanced tumor stage in CRC-DM patients. Physiological hyperglycemia suppressed CRMP2 expression/activity and augmented malignant characteristics of CRC cells. Hyperglycemia promotes actin de-polymerization, cytoskeleton flexibility and cell proliferation/metastasis by downregulating CRMP2 profile and thus contributes to CRC disease progression. CONCLUSIONS: This study uncovers molecular evidence to substantiate and elucidate the link between CRC and T2DM, as well as characterizing the roles of CRMP2 in CRC-DM. Accordingly, altered metabolic adaptations are promising targets for anti-diabetic and cancer strategies.


Asunto(s)
Neoplasias Colorrectales , Diabetes Mellitus Tipo 2 , Hiperglucemia , Péptidos y Proteínas de Señalización Intercelular , Proteínas del Tejido Nervioso , Neoplasias Colorrectales/complicaciones , Comorbilidad , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas del Tejido Nervioso/genética , Fosforilación
8.
Nanoscale Horiz ; 6(9): 729-743, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34323910

RESUMEN

Head and neck cancer (HNC) has a high incidence and a poor prognosis. Epirubicin, a topoisomerase inhibitor, is a potential anthracycline chemotherapeutic for HNC treatment. HuR (ELAVL1), an RNA-binding protein, plays a critical role in promoting tumor survival, invasion, and resistance. HuR knockout via CRISPR/Cas9 (HuR CRISPR) is a possible strategy for the simultaneous modulation of the various pathways of tumor progression. Multifunctional nanoparticles modified with pH-sensitive epidermal growth factor receptor (EGFR)-targeting and nucleus-directed peptides were designed for the efficient delivery of HuR CRISPR and epirubicin to human tongue squamous carcinoma SAS cells and SAS tumor-bearing mice. The pH-sensitive nanoparticles responded to the acidic pH value as a switch to expose the targeting peptides. The cellular uptake and transfection efficiency of these nanoparticles in SAS cells increased via EGFR targeting, ligand-mediated endocytosis, and endosomal escape. These nanoparticles showed low cytotoxicity towards normal oral keratinocyte NOK cells. CRISPR/Cas9 was transported into the nucleus via the nuclear directing peptide and successfully knocked out HuR to suppress proliferation, metastasis, and resistance in SAS cells. The multiple inhibition of EGFR/ß-catenin/epithelial-mesenchymal transition pathways was mediated through modulating the EGFR/PI3K/mTOR/AKT axis. The co-treatment of epirubicin and HuR CRISPR in SAS cells further facilitated apoptosis/necroptosis/autophagy and caused cancer cell death. In combination with HuR CRISPR nanoparticles, the efficacy and safety of epirubicin nanoparticles against cancer in SAS tumor-bearing mice improved significantly. Collectively, these nanoparticles showed a tumor pH response, active EGFR targeting, and nuclear localization and thus offered a combinatorial spatiotemporal platform for chemotherapy and the CRISPR/Cas gene-editing system.


Asunto(s)
Nanopartículas , Neoplasias de la Lengua , Animales , Antraciclinas , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Ratones , Microambiente Tumoral
9.
Sci Rep ; 11(1): 12497, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34127699

RESUMEN

Abnormal accumulation of acrolein, an α, ß unsaturated aldehyde has been reported as one pathological cause of the CNS neurodegenerative diseases. In the present study, the neuroprotective effect of selumetinib (a MEK-ERK inhibitor) on acrolein-induced neurotoxicity was investigated in vitro using primary cultured cortical neurons. Incubation of acrolein consistently increased phosphorylated ERK levels. Co-treatment of selumetinib blocked acrolein-induced ERK phosphorylation. Furthermore, selumetinib reduced acrolein-induced increases in heme oxygenase-1 (a redox-regulated chaperone protein) and its transcriptional factor, Nrf-2 as well as FDP-lysine (acrolein-lysine adducts) and α-synuclein aggregation (a pathological biomarker of neurodegeneration). Morphologically, selumetinib attenuated acrolein-induced damage in neurite outgrowth, including neuritic beading and neurite discontinuation. Moreover, selumetinib prevented acrolein-induced programmed cell death via decreasing active caspase 3 (a hallmark of apoptosis) as well as RIP (receptor-interacting protein) 1 and RIP3 (biomarkers for necroptosis). In conclusion, our study showed that selumetinib inhibited acrolein-activated Nrf-2-HO-1 pathway, acrolein-induced protein conjugation and aggregation as well as damage in neurite outgrowth and cell death, suggesting that selumetinib, a MEK-ERK inhibitor, may be a potential neuroprotective agent against acrolein-induced neurotoxicity in the CNS neurodegenerative diseases.


Asunto(s)
Acroleína/toxicidad , Bencimidazoles/administración & dosificación , Enfermedades Neurodegenerativas/prevención & control , Fármacos Neuroprotectores/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/patología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Necroptosis/efectos de los fármacos , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/patología , Proyección Neuronal/efectos de los fármacos , Neuronas/patología , Cultivo Primario de Células , Agregado de Proteínas/efectos de los fármacos , Ratas , Pruebas de Toxicidad Aguda , alfa-Sinucleína/metabolismo
11.
J Chin Med Assoc ; 83(11): 1029-1033, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32898088

RESUMEN

BACKGROUND: Age-related macular degeneration (AMD) is one of the leading causes of vision loss. Once the retinal pigment epithelium (RPE) layers are destroyed, the poor visual acuity and recognition are generally irreversible. Cell therapy that possesses enormous potential in regenerative medicine may provide an alternative treatment for several incurable diseases such as AMD. In this study, we developed an innovative polydimethylsiloxane (PDMS)-based biomimetic scaffolds with cylinder micropillars for the cultivation of induced pluripotent stem cell-derived RPEs (iPSC-RPEs). RPEs were cultured on the PDMS-based biomimetic scaffolds and validated the cells gene expression. METHODS: The biomimetic PDMS scaffold was fabricated through spin coating and lithography method. It was further modified on surface with biomolecules to improve cell affinity and stability. The iPSC-RPEs were seeded on the scaffold and analyzed with characteristic gene expression. RESULTS: PDMS biomimetic scaffold was analyzed with Fourier transform infrared spectroscopy and proved its chemical composition. iPSC-RPEs demonstrated confluent cell monolayer on the scaffold and maintained RPE-specific gene expression, which proved the PDMS-based biomimetic scaffold to be supportive for iPSC-RPEs growth. CONCLUSION: The PDMS interface allowed regular growth of iPSC-RPEs and the design of cylinder micropillars further provided the bioscaffold high motion resistance may improve the engraftment stability of iPSC-RPEs after transplantation. Taken together, this innovative PDMS-based biomimetic scaffold may serve as an ideal interface for in vitro iPSC-RPE cultivation and subsequent transplantation in vivo. This novel device exhibits better bioavailability than conventional injection of donor cells and may be an alternative option for the treatment of AMD.


Asunto(s)
Biomimética , Epitelio Pigmentado de la Retina/citología , Andamios del Tejido , Tratamiento Basado en Trasplante de Células y Tejidos , Células Cultivadas , Dimetilpolisiloxanos/química , Humanos , Degeneración Macular/terapia
12.
Pharmaceutics ; 12(8)2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32796618

RESUMEN

Mitochondrial dysfunction may cause cancer and metabolic syndrome. Ellagic acid (abbreviated as E), a phytochemical, possesses anticancer activity. MicroRNA 125 (miR-125) may regulate metabolism. However, E has low aqueous solubility, and miR-125 is unstable in a biological fluid. Hence, this study aimed to develop nanoparticle formulations for the co-treatment of miR-125 and E. These nanoparticles were modified with one mitochondrion-directed peptide and a tumor-targeted ligand, and their modulating effects on mitochondrial dysfunction, antitumor efficacy, and safety in head and neck cancer (HNC) were evaluated. Results revealed that miR-125- and E-loaded nanoparticles effectively targeted cancer cells and intracellular mitochondria. The co-treatment significantly altered cellular bioenergetics, lipid, and glucose metabolism in human tongue squamous carcinoma SAS cells. This combination therapy also regulated protein expression associated with bioenergenesis and mitochondrial dynamics. These formulations also modulated multiple pathways of tumor metabolism, apoptosis, resistance, and metastasis in SAS cells. In vivo mouse experiments showed that the combined treatment of miR-125 and E nanoparticles exhibited significant hypoglycemic and hypolipidemic effects. The combinatorial therapy of E and miR-125 nanoparticles effectively reduced SAS tumor growth. To our best knowledge, this prospective study provided a basis for combining miRNA with a natural compound in nanoformulations to regulate mitochondrial dysfunction and energy metabolism associated with cancer.

13.
Theranostics ; 10(15): 6695-6714, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32550898

RESUMEN

Background: Head and neck cancer (HNC) is a major cause of morbidity and mortality and has a poor treatment outcome. Irinotecan, a topoisomerase-I inhibitor, induces cell death by decreasing the religation of double-strand DNA. However, epithelial-mesenchymal transition (EMT), therapy resistance, and systemic toxicity caused by available antineoplastic agents hinder the efficacy and safety of HNC treatment. Chemotherapy combined with gene therapy shows potential application in circumventing therapy resistance and EMT. miR-200 exerts a remarkable suppressing effect on EMT-associated genes. Herein, liposomes and solid lipid nanoparticles (SLNs) modified with a pH-sensitive, self-destructive polyethylene glycol (PEG) shell and different peptides were designed as irinotecan and miR-200 nanovectors to enhance tumor-specific accumulation. These peptides included one ligand targeting the angiogenic tumor neovasculature, one mitochondrion-directed apoptosis-inducing peptide, and one cell-penetrating peptide (CPP) with high potency and selectivity toward cancer cells. Methods: Physicochemical characterization, cytotoxicity analysis, cellular uptake, regulation mechanisms, and in vivo studies on miR-200- and irinotecan-incorporated nanoparticles were performed to identify the potential antitumor efficacy and biosafety issues involved in HNC treatment and to elucidate the underlying signaling pathways. Results: We found that the cleavable PEG layer responded to low extracellular pH, and that the CPP and targeting peptides were exposed to improve the uptake and release of miR-200 and irinotecan into HNC human tongue squamous carcinoma (SAS) cells. The apoptosis of SAS cells treated with the combinatorial therapy was significantly induced by regulating various pathways, such as the Wnt/ß-catenin, MDR, and EMT pathways. The therapeutic efficacy and safety of the proposed co-treatment outperformed the commercially available Onivyde and other formulations used in a SAS tumor-bearing mouse model in this study. Conclusion: Chemotherapy and gene therapy co-treatment involving pH-sensitive and targeting peptide-modified nanoparticles may be an innovative strategy for HNC treatment.


Asunto(s)
Ácidos/química , Péptidos de Penetración Celular/farmacología , Irinotecán/farmacología , MicroARNs/administración & dosificación , Nanopartículas/administración & dosificación , Polietilenglicoles/química , Neoplasias de la Lengua/terapia , Animales , Apoptosis , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/terapia , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Terapia Genética/métodos , Humanos , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos BALB C , MicroARNs/genética , Mitocondrias/metabolismo , Nanopartículas/química , Neovascularización Patológica/metabolismo , Neoplasias de la Lengua/genética , Neoplasias de la Lengua/metabolismo , Neoplasias de la Lengua/patología , Inhibidores de Topoisomerasa I/farmacología , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Int J Mol Sci ; 21(12)2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32585823

RESUMEN

Obesity is a metabolic disorder that results from complex interactions between genetic predisposition and dietary factors. Interleukin-4 (IL-4), besides its role in immunity, has metabolic effects on insulin efficacy. We studied the effects of IL-4 on metabolic abnormalities in a mice model of obesity involving leptin deficiency and leptin resistance. Leptin-deficient 145E and leptin-resistant high-fat diet (HFD) mice showed lower levels of circulating IL-4. 145E and HFD mice showed a number of abnormalities: Obesity, hyperglycemia, hyperinsulinemia, insulin resistance, dyslipidemia, liver injury, and adiposity with concurrent inflammation, decreases in Akt, signal transducer and activator of transcription 3 (STAT3), and STAT6 phosphorylation in the hypothalamus, liver, and epididymal fat. Independent of leptin-deficient obesity and dietary obesity, a course of 8-week IL-4 supplementation improved obesity and impairment in Akt, STAT3, and STAT6 signaling. Amelioration of cytokine expression, despite variable extents, was closely linked with the actions of IL-4. Additionally, the browning of white adipocytes by IL-4 was found in epididymal white adipose tissues and 3T3-L1 preadipocytes. Chronic exercise, weight management, and probiotics are recommended to overweight patients and IL-4 signaling is associated with clinical improvement. Thus, IL-4 could be a metabolic regulator and antiobesity candidate for the treatment of obesity and its complications.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Inflamación/prevención & control , Interleucina-4/farmacología , Leptina/deficiencia , Enfermedades Metabólicas/prevención & control , Obesidad/prevención & control , Adyuvantes Inmunológicos/farmacología , Animales , Inflamación/etiología , Resistencia a la Insulina , Masculino , Enfermedades Metabólicas/etiología , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología
15.
Small ; 15(49): e1903296, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31709707

RESUMEN

Irinotecan is one of the main chemotherapeutic agents for colorectal cancer (CRC). MicroRNA-200 (miR-200) has been reported to inhibit metastasis in cancer cells. Herein, pH-sensitive and peptide-modified liposomes and solid lipid nanoparticles (SLN) are designed for encapsulation of irinotecan and miR-200, respectively. These peptides include one cell-penetrating peptide, one ligand targeted to tumor neovasculature undergoing angiogenesis, and one mitochondria-targeting peptide. The peptide-modified nanoparticles are further coated with a pH-sensitive PEG-lipid derivative with an imine bond. These specially-designed nanoparticles exhibit pH-responsive release, internalization, and intracellular distribution in acidic pH of colon cancer HCT116 cells. These nanoparticles display low toxicity to blood and noncancerous intestinal cells. Delivery of miR-200 by SLN further increases the cytotoxicity of irinotecan-loaded liposomes against CRC cells by triggering apoptosis and suppressing RAS/ß-catenin/ZEB/multiple drug resistance (MDR) pathways. Using CRC-bearing mice, the in vivo results further indicate that irinotecan and miR-200 in pH-responsive targeting nanoparticles exhibit positive therapeutic outcomes by inhibiting colorectal tumor growth and reducing systemic toxicity. Overall, successful delivery of miR and chemotherapy by multifunctional nanoparticles may modulate ß-catenin/MDR/apoptosis/metastasis signaling pathways and induce programmed cancer cell death. Thus, these pH-responsive targeting nanoparticles may provide a potential regimen for effective treatment of colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Irinotecán/uso terapéutico , MicroARNs/administración & dosificación , MicroARNs/uso terapéutico , Nanopartículas/química , Animales , Apoptosis/fisiología , Neoplasias Colorrectales/tratamiento farmacológico , Endocitosis/fisiología , Células HCT116 , Humanos , Concentración de Iones de Hidrógeno , Etiquetado Corte-Fin in Situ , Irinotecán/administración & dosificación , Masculino , Ratones , Ratones Endogámicos BALB C , Polietilenglicoles/química , Tomografía Computarizada por Tomografía de Emisión de Positrones
16.
J Nanobiotechnology ; 17(1): 89, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31426807

RESUMEN

BACKGROUND: The emergence of resistance to chemotherapy or target therapy, tumor metastasis, and systemic toxicity caused by available anticancer drugs hamper the successful colorectal cancer (CRC) treatment. The rise in epidermal growth factor receptor (EGFR; human epidermal growth factor receptor 1; HER1) expression and enhanced phosphorylation of HER2 and HER3 are associated with tumor resistance, metastasis and invasion, thus resulting in poor outcome of anti-CRC therapy. The use of afatinib, a pan-HER inhibitor, is a potential therapeutic approach for resistant CRC. Additionally, miR-139 has been reported to be negatively correlated with chemoresistance, metastasis, and epithelial-mesenchymal transition (EMT) of CRC. Hence, we develop a nanoparticle formulation consisting of a polymer core to carry afatinib or miR-139, which is surrounded by lipids modified with a targeting ligand and a pH-sensitive penetrating peptide to improve the anticancer effect of cargos against CRC cells. RESULTS: Our findings show that this formulation displays a spherical shape with core/shell structure, homogeneous particle size distribution and negative zeta potential. The prepared formulations demonstrate a pH-sensitive release profile and an enhanced uptake of cargos into human colorectal adenocarcinoma Caco-2 cells in response to the acidic pH. This nanoparticle formulation incorporating afatinib and miR-139 exhibits low toxicity to normal cells but shows a better inhibitory effect on Caco-2 cells than other formulations. Moreover, the encapsulation of afatinib and miR-139 in peptide-modified nanoparticles remarkably induces apoptosis and inhibits migration and resistance of Caco-2 cells via suppression of pan-HER tyrosine kinase/multidrug resistance/metastasis pathways. CONCLUSION: This study proposes a multifunctional nanoparticle formulation for targeted modulation of apoptosis/EGFR/HER/EMT/resistance/progression pathways to increase the sensitivity of colon cancer cells to afatinib.


Asunto(s)
Afatinib/química , Antineoplásicos/química , Lípidos/química , MicroARNs/química , Nanopartículas/química , Péptidos/química , Polímeros/química , Afatinib/farmacología , Afatinib/uso terapéutico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Células CACO-2 , Línea Celular Tumoral , Química Farmacéutica/métodos , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Péptidos/farmacología , Péptidos/uso terapéutico , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Ratas , Ratas Sprague-Dawley
17.
Sci Rep ; 9(1): 2516, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30792526

RESUMEN

Activated epidermal growth factor receptor (EGFR) has been proposed in the pathophysiology of neurodegenerative diseases. In the present study, the anti-inflammatory effect of afatinib, an EGFR-tyrosine kinase inhibitor (EGFR-TKIs) was investigated using CTX-TNA2 cells and primary cultured astrocytes subjected to oxygen/glucose deprivation (OGD). We found that OGD induced EGFR phosphorylation and activated subsequent signaling pathways, including phosphorylation of AKT and extracellular signal-regulated kinases (ERK). Afatinib blocked OGD-induced phosphorylation of EGFR, AKT and ERK. At the same time, afatinib attenuated OGD-induced elevations in glial fibrillary acidic protein (a biomarker of activated astrocytes) and proliferating cell nuclear antigen expression (a cell proliferating biomarker) as well as hypoxia-induced migratory ability. Furthermore, afatinib decreased OGD-induced increases in cyclooxygenase-II and inducible nitric oxide synthase expression of the treated astrocytes as well as NO content in the culture medium. Moreover, afatinib attenuated OGD-induced caspase 1 activation (a biomarker of inflammasome activation) and interleukin-1ß levels (a pro-inflammatory cytokine). Collectively, afatinib could block OGD-induced EGFR activation and its downstream signaling pathways in astrocytes. Moreover, afatinib attenuated OGD-induced astrocyte activation, proliferation and inflammasome activation. These data support the involvement of EGFR activation in neuroinflammation. Furthermore, EGFR-TKIs may be promising in inhibiting neuroinflammation in the CNS neurodegenerative diseases.


Asunto(s)
Afatinib/farmacología , Genes erbB-1/genética , Inflamación/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Hipoxia de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Carencia Cultural , Ciclooxigenasa 2/genética , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Inflamación/genética , Inflamación/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Neuroglía/efectos de los fármacos , Óxido Nítrico/genética , Óxido Nítrico Sintasa de Tipo II/genética , Oxígeno/metabolismo , Fosforilación/efectos de los fármacos , Cultivo Primario de Células , Inhibidores de Proteínas Quinasas/farmacología , Ratas
18.
Oxid Med Cell Longev ; 2018: 6923187, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30584465

RESUMEN

Type 2 diabetes mellitus (T2DM), with dysregulated hepatic gluconeogenesis as the major cause of fasting hyperglycemia, is closely associated with chronic inflammation. We previously demonstrated interleukin-4 (IL-4) improves insulin sensitivity and glucose tolerance while reducing lipid deposits. The present study examined the in vitro effects of IL-4 on insulin signaling molecules, glucose uptake, and lipid metabolism in hepatocytes, as well as in vivo effects on hepatic adiposity, for elucidating the roles of IL-4 in hepatic energy metabolism. Potential interaction between IL-4 and insulin in regulating hepatic metabolism was also investigated. Our results showed that IL-4 enhanced Akt and GSK-3α/ß phosphorylations, which in turn promoted glycogen synthesis. IL-4 not only potentiated basal glucose uptake by upregulating glucose transporter 2 expression but also promoted insulin-induced glucose uptake. Additionally, IL-4 increased triglyceride contents through facilitating free fatty acid uptake and expression/activity of lipogenic enzymes. The major effects of IL-4 on the liver were to promote energy storage by boosting insulin-stimulated glucose uptake and lipid synthesis. This study provides evidence to implicate the novel roles of IL-4 in mediating hepatic glucose and lipid metabolism, interactions between immune responses and metabolic homeostasis, and the involvement of IL-4 in metabolic abnormalities.


Asunto(s)
Glucosa/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Insulina/farmacología , Interleucina-4/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Animales , Western Blotting , Diabetes Mellitus Tipo 2/metabolismo , Células Hep G2 , Humanos , Masculino , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Triglicéridos/metabolismo
19.
Mol Neurobiol ; 55(1): 130-137, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28866823

RESUMEN

Elevated levels of acrolein, an α,ß-unsaturated aldehyde are detected in the brain of patients with Parkinson's disease (PD). In the present study, the neuroprotective effect of baicalein (a phenolic flavonoid in the dried root of Scutellaria baicalensis Georgi) on acrolein-induced neurodegeneration of nigrostriatal dopaminergic system was investigated using local infusion of acrolein in the substantia nigra (SN) of rat brain. Systemic administration of baicalein (30 mg/kg, i.p.) significantly attenuated acrolein-induced elevations in 4-hydroxy-2-noneal (a product of lipid peroxidation), N-(3-formyl-3,4-dehydropiperidino)lysine (a biomarker of acrolein-conjugated proteins), and heme-oxygenase-1 levels (a redox-regulated protein) in the infused SN, indicating that baicalein inhibited acrolein-induced oxidative stress and protein conjugation. Furthermore, baicalein reduced acrolein-induced elevations in glial fibrillary acidic protein (a biomarker of activated astrocytes), ED-1 (a biomarker of activated microglia), and mature cathepsin B levels (a cysteine lysosomal protease), suggesting that baicalein attenuated acrolein-induced neuroinflammation. Moreover, baicalein attenuated acrolein-induced caspase 1 activation (a pro-inflammatory caspase) and interleukin-1ß levels, indicating that baicalein prevented acrolein-induced inflammasome activation. In addition, baicalein significantly attenuated acrolein-induced caspase 3 activation (a biomarker of apoptosis) as well as acrolein-induced elevation in receptor interacting protein kinase (RIPK) 3 levels (an initiator of necroptosis), indicating that baicalein attenuated apoptosis and necroptosis. At the same time, baicalein mitigated acrolein-induced reduction in dopamine levels in the striatum ipsilateral to acrolein-infused SN. In conclusion, our data suggest that baicalein is neuroprotective via inhibiting oxidative stress, protein conjugation, and inflammation. Furthermore, baicalein prevents acrolein-induced program cell deaths, suggesting that baicalein is therapeutically useful for slowing PD progression.


Asunto(s)
Acroleína/toxicidad , Cuerpo Estriado/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Flavanonas/farmacología , Fármacos Neuroprotectores/farmacología , Sustancia Negra/efectos de los fármacos , Animales , Antioxidantes/farmacología , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Sustancia Negra/metabolismo
20.
Oncotarget ; 8(41): 70406-70421, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-29050289

RESUMEN

Acrolein (Acr), a highly reactive unsaturated aldehyde, can cause various lung diseases including asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We have found that Acr can damage not only genomic DNA but also DNA repair proteins causing repair dysfunction and enhancing cells' mutational susceptibility. While these effects may account for Acr lung carcinogenicity, the mechanisms by which Acr induces lung diseases other than cancer are unclear. In this study, we found that Acr induces damages in mitochondrial DNA (mtDNA), inhibits mitochondrial bioenergetics, and alters mtDNA copy number in human lung epithelial cells and fibroblasts. Furthermore, Acr induces mitochondrial fission which is followed by autophagy/ mitophagy and Acr-induced DNA damages can trigger apoptosis. However, the autophagy/ mitophagy process does not change the level of Acr-induced mtDNA damages and apoptosis. We propose that Acr-induced mtDNA damages trigger loss of mtDNA via mitochondrial fission and mitophagy. These processes and mitochondria dysfunction induced by Acr are causes that lead to lung diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...