Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sleep Res ; : e14295, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39049436

RESUMEN

CDKL5 deficiency disorder is a rare genetic disease caused by mutations in the CDKL5 gene. Central apneas during wakefulness have been reported in patients with CDKL5 deficiency disorder. Studies on CDKL5-knockout mice, a CDKL5 deficiency disorder model, reported sleep apneas, but it is still unclear whether these events are central (central sleep apnea) or obstructive (obstructive sleep apnea) and may be related to alterations of brain circuits that modulate breathing rhythm. This study aimed to discriminate central sleep apnea and obstructive sleep apnea in CDKL5-knockout mice, and explore changes in the somatostatin neurons expressing high levels of neurokinin-1 receptors within the preBötzinger complex. Ten adult male wild-type and 12 CDKL5-knockout mice underwent electrode implantation for sleep stage discrimination and diaphragmatic activity recording, and were studied using whole-body plethysmography for 7 hr during the light (resting) period. Sleep apneas were categorised as central sleep apnea or obstructive sleep apnea based on the recorded signals. The number of somatostatin neurons in the preBötzinger complex and their neurokinin-1 receptors expression were assessed through immunohistochemistry in a sub-group of animals. CDKL5-knockout mice exhibited a higher apnea occurrence rate and a greater prevalence of obstructive sleep apnea during rapid eye movement sleep, compared with wild-type, whereas no significant difference was observed for central sleep apnea. Moreover, CDKL5-knockout mice showed a reduced number of somatostatin neurons in the preBötzinger complex, and these neurons expressed a lower level of neurokinin-1 receptors compared with wild-type controls. These findings underscore the pivotal role of CDKL5 in regulating normal breathing, suggesting its potential involvement in shaping preBötzinger complex neural circuitry and controlling respiratory muscles during sleep.

2.
J Sleep Res ; : e14287, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39032099

RESUMEN

Narcolepsy type-1 (NT1) is a lifelong sleep disease, characterised by impairment of the orexinergic system, with a typical onset during adolescence and young adulthood. Since the wake-sleep cycle physiologically changes with ageing, this study aims to compare sleep patterns between orexin-knockout (KO) and wild type (WT) control mice at different ages. Four groups of age-matched female KO and WT mice (16 weeks of age: 8 KO-YO and 9 WT-YO mice; 87 weeks of age: 13 KO-OLD and 12 WT-OLD mice) were implanted with electrodes for discriminating wakefulness, rapid-eye-movement sleep (REMS), and non-REMS (NREMS). Mice were recorded for 48 h in their home cages and for 7 more hours into a plethysmographic chamber to characterise their sleep-breathing pattern. Regardless of orexin deficiency, OLD mice spent less time awake and had fragmentation of this behavioural state showing more bouts of shorter length than YO mice. OLD mice also had more NREMS bouts and less frequent NREMS apneas than YO mice. Regardless of age, KO mice showed cataplexy-like episodes and shorter REMS latency than WT controls and had a faster breathing rate and an increased minute ventilation during REMS. KO mice also had more wakefulness, NREMS and REMS bouts, and a shorter mean length of wakefulness bouts than WT controls. Our experiment indicated that the lack of orexins as well as ageing importantly modulate the sleep and breathing phenotype in mice. The narcoleptic phenotype caused by orexin deficiency in female mice was substantially preserved with ageing.

3.
Cells ; 11(6)2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35326477

RESUMEN

BACKGROUND: Anti-IgLON5 disease is a rare late-onset neurological disease associated with autoantibodies against IgLON5, neuronal accumulation of phosphorylated Tau protein (p-Tau), and sleep, respiratory, and motor alterations. PURPOSE: We performed a pilot study of whether the neuropathological and clinical features of anti-IgLON5 disease may be recapitulated in mice with chronic intracerebroventricular infusion of human anti-IgLON5 disease IgG (Pt-IgG). METHODS: Humanized transgenic hTau mice expressing human Tau protein and wild-type (WT) control mice were infused intracerebroventricularly with Pt-IgG or with antibodies from a control subject for 14 days. The sleep, respiratory, and motor phenotype was evaluated at the end of the antibody infusion and at least 30 days thereafter, followed by immunohistochemical assessment of p-Tau deposition. RESULTS: In female hTau and WT mice infused with Pt-IgG, we found reproducible trends of diffuse neuronal cytoplasmic p-Tau deposits in the brainstem and hippocampus, increased ventilatory period during sleep, and decreased inter-lick interval during wakefulness. These findings were not replicated on male hTau mice. CONCLUSION: The results of our pilot study suggest, but do not prove, that chronic ICV infusion of mice with Pt-IgG may elicit neuropathological, respiratory, and motor alterations. These results should be considered as preliminary until replicated in larger studies taking account of potential sex differences in mice.


Asunto(s)
Apnea Obstructiva del Sueño , Proteínas tau , Animales , Autoanticuerpos/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Encefalitis , Femenino , Enfermedad de Hashimoto , Humanos , Inmunoglobulina G , Infusiones Intraventriculares , Masculino , Ratones , Proyectos Piloto , Proteínas tau/metabolismo
4.
Sci Rep ; 11(1): 23897, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903845

RESUMEN

Early-life exposure to environmental toxins like tobacco can permanently re-program body structure and function. Here, we investigated the long-term effects on mouse adult sleep phenotype exerted by early-life exposure to nicotine or to its principal metabolite, cotinine. Moreover, we investigated whether these effects occurred together with a reprogramming of the activity of the hippocampus, a key structure to coordinate the hormonal stress response. Adult male mice born from dams subjected to nicotine (NIC), cotinine (COT) or vehicle (CTRL) treatment in drinking water were implanted with electrodes for sleep recordings. NIC and COT mice spent significantly more time awake than CTRL mice at the transition between the rest (light) and the activity (dark) period. NIC and COT mice showed hippocampal glucocorticoid receptor (GR) downregulation compared to CTRL mice, and NIC mice also showed hippocampal mineralocorticoid receptor downregulation. Hippocampal GR expression significantly and inversely correlated with the amount of wakefulness at the light-to-dark transition, while no changes in DNA methylation were found. We demonstrated that early-life exposure to nicotine (and cotinine) concomitantly entails long-lasting reprogramming of hippocampal activity and sleep phenotype suggesting that the adult sleep phenotype may be modulated by events that occurred during that critical period of life.


Asunto(s)
Cotinina/toxicidad , Hipocampo/efectos de los fármacos , Nicotina/toxicidad , Receptores de Glucocorticoides/metabolismo , Trastornos del Sueño-Vigilia/metabolismo , Animales , Regulación hacia Abajo , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neurogénesis , Receptores de Glucocorticoides/genética , Trastornos del Sueño-Vigilia/etiología , Contaminación por Humo de Tabaco/efectos adversos
5.
Neurobiol Dis ; 159: 105508, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34509609

RESUMEN

STUDY OBJECTIVES: The use of mouse models in sleep apnea study is limited by the belief that central (CSA) but not obstructive sleep apneas (OSA) occur in rodents. We aimed to develop a protocol to investigate the presence of OSAs in wild-type mice and, then, to apply it to a validated model of Down syndrome (Ts65Dn), a human pathology characterized by a high incidence of OSAs. METHODS: In a pilot study, nine C57BL/6J wild-type mice were implanted with electrodes for electroencephalography (EEG), neck electromyography (nEMG), and diaphragmatic activity (DIA), and then placed in a whole-body-plethysmographic (WBP) chamber for 8 h during the rest (light) phase to simultaneously record sleep and breathing activity. CSA and OSA were discriminated on the basis of WBP and DIA signals recorded simultaneously. The same protocol was then applied to 12 Ts65Dn mice and 14 euploid controls. RESULTS: OSAs represented about half of the apneic events recorded during rapid-eye-movement-sleep (REMS) in each experimental group, while the majority of CSAs were found during non-rapid eye movement sleep. Compared with euploid controls, Ts65Dn mice had a similar total occurrence rate of apneic events during sleep, but a significantly higher occurrence rate of OSAs during REMS, and a significantly lower occurrence rate of CSAs during NREMS. CONCLUSIONS: Mice physiologically exhibit both CSAs and OSAs. The latter appear almost exclusively during REMS, and are highly prevalent in Ts65Dn. Mice may, thus, represent a useful model to accelerate the understanding of the pathophysiology and genetics of sleep-disordered breathing and to help the development of new therapies.


Asunto(s)
Síndrome de Down/fisiopatología , Apnea Central del Sueño/fisiopatología , Apnea Obstructiva del Sueño/fisiopatología , Sueño REM/fisiología , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Electromiografía , Ratones , Proyectos Piloto , Pletismografía Total
6.
Front Neurosci ; 15: 660518, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093114

RESUMEN

The loss of hypothalamic neurons that produce wake-promoting orexin (hypocretin) neuropeptides is responsible for narcolepsy type 1 (NT1). While the number of histamine neurons is increased in patients with NT1, results on orexin-deficient mouse models of NT1 are inconsistent. On the other hand, the effect of histamine deficiency on orexin neuron number has never been tested on mammals, even though histamine has been reported to be essential for the development of a functional orexin system in zebrafish. The aim of this study was to test whether histamine neurons are increased in number in orexin-deficient mice and whether orexin neurons are decreased in number in histamine-deficient mice. The hypothalamic neurons expressing L-histidine decarboxylase (HDC), the histamine synthesis enzyme, and those expressing orexin A were counted in four orexin knock-out mice, four histamine-deficient HDC knock-out mice, and four wild-type C57BL/6J mice. The number of HDC-positive neurons was significantly higher in orexin knock-out than in wild-type mice (2,502 ± 77 vs. 1,800 ± 213, respectively, one-tailed t-test, P = 0.011). Conversely, the number of orexin neurons was not significantly lower in HDC knock-out than in wild-type mice (2,306 ± 56 vs. 2,320 ± 120, respectively, one-tailed t-test, P = 0.459). These data support the view that orexin peptide deficiency is sufficient to increase histamine neuron number, supporting the involvement of the histamine waking system in the pathophysiology of NT1. Conversely, these data do not support a significant role of histamine in orexin neuron development in mammals.

7.
Sleep ; 44(7)2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-33517440

RESUMEN

STUDY OBJECTIVES: Increase in arterial pressure (AP) during sleep and smaller differences in AP between sleep and wakefulness have been reported in orexin (hypocretin)-deficient mouse models of narcolepsy type 1 (NT1) and confirmed in NT1 patients. We tested whether these alterations are mediated by parasympathetic or sympathetic control of the heart and/or resistance vessels in an orexin-deficient mouse model of NT1. METHODS: Thirteen orexin knock-out (ORX-KO) mice were compared with 12 congenic wild-type (WT) mice. The electroencephalogram, electromyogram, and AP of the mice were recorded in the light (rest) period during intraperitoneal infusion of atropine methyl nitrate, atenolol, or prazosin to block muscarinic cholinergic, ß 1-adrenergic, or α 1-adrenergic receptors, respectively, while saline was infused as control. RESULTS: AP significantly depended on a three-way interaction among the mouse group (ORX-KO vs WT), the wake-sleep state, and the drug or vehicle infused. During the control vehicle infusion, ORX-KO had significantly higher AP values during REM sleep, smaller decreases in AP from wakefulness to either non-rapid-eye-movement (non-REM) sleep or REM sleep, and greater increases in AP from non-REM sleep to REM sleep compared to WT. These differences remained significant with atropine methyl nitrate, whereas they were abolished by prazosin and, except for the smaller AP decrease from wakefulness to REM sleep in ORX-KO, also by atenolol. CONCLUSIONS: Sleep-related alterations of AP due to orexin deficiency significantly depend on alterations in cardiovascular sympathetic control in a mouse model of NT1.


Asunto(s)
Narcolepsia , Neuropéptidos , Animales , Presión Sanguínea , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Orexinas , Sueño , Vigilia
8.
J Sleep Res ; 30(4): e13255, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33314463

RESUMEN

Antihistamine medications have been suggested to elicit clinical features of restless legs syndrome. The available data are limited, particularly concerning periodic leg movements during sleep, which are common in restless legs syndrome and involve bursts of tibialis anterior electromyogram. Here, we tested whether the occurrence of tibialis anterior electromyogram bursts during non-rapid eye movement sleep is altered in histidine decarboxylase knockout mice with congenital histamine deficiency compared with that in wild-type control mice. We implanted six histidine decarboxylase knockout and nine wild-type mice to record neck muscle electromyogram, bilateral tibialis anterior electromyogram, and electroencephalogram during the rest (light) period. The histidine decarboxylase knockout and wild-type mice did not differ significantly in terms of sleep architecture. In both histidine decarboxylase knockout and wild-type mice, the distribution of intervals between tibialis anterior electromyogram bursts had a single peak for intervals < 10 s. The total occurrence rate of tibialis anterior electromyogram bursts during non-rapid eye movement sleep and the occurrence rate of the tibialis anterior electromyogram bursts separated by intervals < 10 s were significantly lower in histidine decarboxylase knockout than in wild-type mice. These data do not support the hypothesis that preventing brain histamine signalling may promote restless legs syndrome. Rather, the data suggest that limb movements during sleep, including those separated by short intervals, are a manifestation of subcortical arousal requiring the integrity of brain histamine signalling.


Asunto(s)
Electromiografía , Extremidades/fisiología , Histamina/deficiencia , Síndrome de las Piernas Inquietas/fisiopatología , Sueño/fisiología , Animales , Nivel de Alerta , Femenino , Histamina/metabolismo , Histidina Descarboxilasa/deficiencia , Histidina Descarboxilasa/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
9.
JCI Insight ; 5(12)2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32365348

RESUMEN

Imprinted genes are highly expressed in the hypothalamus; however, whether specific imprinted genes affect hypothalamic neuromodulators and their functions is unknown. It has been suggested that Prader-Willi syndrome (PWS), a neurodevelopmental disorder caused by lack of paternal expression at chromosome 15q11-q13, is characterized by hypothalamic insufficiency. Here, we investigate the role of the paternally expressed Snord116 gene within the context of sleep and metabolic abnormalities of PWS, and we report a significant role of this imprinted gene in the function and organization of the 2 main neuromodulatory systems of the lateral hypothalamus (LH) - namely, the orexin (OX) and melanin concentrating hormone (MCH) - systems. We observed that the dynamics between neuronal discharge in the LH and the sleep-wake states of mice with paternal deletion of Snord116 (PWScrm+/p-) are compromised. This abnormal state-dependent neuronal activity is paralleled by a significant reduction in OX neurons in the LH of mutant mice. Therefore, we propose that an imbalance between OX- and MCH-expressing neurons in the LH of mutant mice reflects a series of deficits manifested in the PWS, such as dysregulation of rapid eye movement (REM) sleep, food intake, and temperature control.


Asunto(s)
Conducta Animal/fisiología , Área Hipotalámica Lateral/metabolismo , Hipotálamo/metabolismo , Orexinas/metabolismo , ARN Nucleolar Pequeño/genética , Sueño/fisiología , Animales , Modelos Animales de Enfermedad , Conducta Alimentaria , Área Hipotalámica Lateral/fisiopatología , Hormonas Hipotalámicas/metabolismo , Melaninas/metabolismo , Ratones , Neuronas/metabolismo , Hormonas Hipofisarias/metabolismo , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/fisiopatología
10.
J Comp Physiol B ; 190(4): 493-507, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32399793

RESUMEN

Under conditions of scarce food availability and cool ambient temperature, the mouse (Mus Musculus) enters into torpor, a state of transient metabolic suppression mediated in part by the autonomic nervous system. Hypothalamic orexins are involved in the coordination of behaviors and autonomic function. We tested whether orexins are necessary for the coordinated changes in physiological variables, which underlie torpor and represent its physiological signature. We performed simultaneous measurements of brain temperature, electroencephalographic, and electromyographic activity allowing objective assessment of wake-sleep behavior, and cardiovascular, respiratory, and metabolic variables in orexin knockout mice (ORX-KO) and wild-type mice (WT) during torpor bouts elicited by caloric restriction and mild cold stress. We found that torpor bouts in WT are characterized by an exquisitely coordinated physiological signature. The characteristics of torpor bouts in terms of duration and rate of change of brain temperature and electromyographic activity at torpor entrance and exit did not differ significantly between ORX-KO and WT, and neither did the cardiovascular, respiratory, and metabolic characteristics of torpor. ORX-KO and WT also had similar wake-sleep state changes associated with torpor bouts, with the exception of a significantly higher rapid-eye movement sleep time in ORX-KO at torpor entrance. Our results demonstrate that orexins are not necessary either for the normal physiological adaptations occurring during torpor in mice or for their coordination, suggesting that mechanisms different from orexin peptide signaling may be involved in the regulation and the coordination of these physiological responses.


Asunto(s)
Letargo/fisiología , Animales , Encéfalo/fisiología , Electroencefalografía , Electromiografía , Femenino , Ratones Endogámicos C57BL , Ratones Noqueados , Orexinas/genética , Orexinas/fisiología , Consumo de Oxígeno , Sueño/fisiología , Vigilia/fisiología
11.
J Exp Biol ; 223(Pt 13)2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32457059

RESUMEN

The loss of orexinergic neurons, which release orexins, results in narcolepsy. Orexins participate in the regulation of many physiological functions, and their role as wake-promoting molecules has been widely described. Less is known about the involvement of orexins in body temperature and respiratory regulation. The aim of this study was to investigate if orexin peptides modulate respiratory regulation as a function of ambient temperature (Ta) during different sleep stages. Respiratory phenotype of male orexin knockout (KO-ORX, N=9) and wild-type (WT, N=8) mice was studied at thermoneutrality (Ta=30°C) or during mild cold exposure (Ta=20°C) inside a whole-body plethysmography chamber. The states of wakefulness (W), non-rapid eye movement sleep (NREMS) and rapid eye movement sleep (REMS) were scored non-invasively, using a previously validated technique. In both WT and KO-ORX mice, Ta strongly and significantly affected ventilatory period and minute ventilation values during NREMS and REMS; moreover, the occurrence rate of sleep apneas in NREMS was significantly reduced at Ta=20°C compared with Ta=30°C. Overall, there were no differences in respiratory regulation during sleep between WT and KO-ORX mice, except for sigh occurrence rate, which was significantly increased at Ta=20°C compared with Ta=30°C in WT mice, but not in KO-ORX mice. These results do not support a main role for orexin peptides in the temperature-dependent modulation of respiratory regulation during sleep. However, we showed that the occurrence rate of sleep apneas critically depends on Ta, without any significant effect of orexin peptides.


Asunto(s)
Neuropéptidos , Animales , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones , Ratones Noqueados , Neuropéptidos/genética , Orexinas , Fenotipo , Sueño , Temperatura , Vigilia
12.
Sci Rep ; 10(1): 4263, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32123260

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Neurosci Biobehav Rev ; 117: 65-77, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31491473

RESUMEN

Stress is an adaptative response aimed at restoring body homeostasis. The classical neuroendocrine stress response involving the activation of the hypothalamic-pituitary-adrenal (HPA) axis modulates many physiological aspects, such as the wake-sleep cycle. In the present review, we will first report a series of human and rodent studies showing that each actor of the HPA axis has the potential to interfere with sleep homeostasis and, then, we will highlight how acute or chronic stress differently modulates the wake-sleep cycle. Moreover, we will present new and interesting studies dealing with the relationship between sleep and stress on a different (longer) time scale. Particularly, we will discuss how the exposure to perinatal stress, probably through epigenetic modulations, is sufficient to cause persistent sleep derangements during adult life. In light of this evidence, the main message of the present review is that the complex relationship between sleep and stress changes dramatically on the basis of the time scale considered and, consequently, "time" should be considered as a critical factor when facing this topic.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Sueño , Estrés Psicológico
14.
Sci Rep ; 9(1): 15462, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31664081

RESUMEN

Torpor is a peculiar mammalian behaviour, characterized by the active reduction of metabolic rate, followed by a drop in body temperature. To enter torpor, the activation of all thermogenic organs that could potentially defend body temperature must be prevented. Most of these organs, such as the brown adipose tissue, are controlled by the key thermoregulatory region of the Raphe Pallidus (RPa). Currently, it is not known which brain areas mediate the entrance into torpor. To identify these areas, the expression of the early gene c-Fos at torpor onset was assessed in different brain regions in mice injected with a retrograde tracer (Cholera Toxin subunit b, CTb) into the RPa region. The results show a network of hypothalamic neurons that are specifically activated at torpor onset and a direct torpor-specific projection from the Dorsomedial Hypothalamus to the RPa that could putatively mediate the suppression of thermogenesis during torpor.


Asunto(s)
Ayuno , Vías Nerviosas/fisiología , Letargo , Animales , Regulación de la Temperatura Corporal/fisiología , Hipotálamo/fisiología , Ratones , Termogénesis/fisiología
15.
J Sleep Res ; 28(6): e12845, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30920081

RESUMEN

Sleep apneas can be categorized as post-sigh (prevailing in non-rapid eye movement sleep) or spontaneous (prevailing in rapid eye movement sleep) according to whether or not they are preceded by an augmented breath (sigh). Notably, the occurrence of these apnea subtypes changes differently in hypoxic/hypercapnic environments and in some genetic diseases, highlighting the importance of an objective discrimination. We aim to: (a) systematically review the literature comparing the criteria used in categorizing mouse sleep apneas; and (b) provide data-driven criteria for this categorization, with the final goal of reducing experimental variability in future studies. Twenty-two wild-type mice, instrumented with electroencephalographic/electromyographic electrodes, were placed inside a whole-body plethysmographic chamber to quantify sleep apneas and sighs. Wake-sleep states were scored on 4-s epochs based on electroencephalographic/electromyographic signals. Literature revision showed that highly different criteria were used for post-sigh apnea definition, the intervals for apnea occurrence after sigh ranging from 1 breath up to 20 s. In our data, the apnea occurrence rate during non-rapid eye movement sleep was significantly higher than that calculated before the sigh only in the 1st and 2nd 4-s epochs following a sigh. These data suggest that, in mice, apneas should be categorized as post-sigh only if they start within 8 s from a sigh; the choice of shorter or longer time windows might underestimate or slightly overestimate their occurrence rate, respectively.


Asunto(s)
Electroencefalografía/métodos , Mecánica Respiratoria/fisiología , Síndromes de la Apnea del Sueño/fisiopatología , Sueño/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Sueño REM/fisiología
16.
Neural Plast ; 2018: 9726950, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29977282

RESUMEN

CDKL5 disorder is a severe neurodevelopmental disorder caused by mutations in the X-linked CDKL5 (cyclin-dependent kinase-like five) gene. CDKL5 disorder primarily affects girls and is characterized by early-onset epileptic seizures, gross motor impairment, intellectual disability, and autistic features. Although all CDKL5 female patients are heterozygous, the most valid disease-related model, the heterozygous female Cdkl5 knockout (Cdkl5 +/-) mouse, has been little characterized. The lack of detailed behavioral profiling of this model remains a crucial gap that must be addressed in order to advance preclinical studies. Here, we provide a behavioral and molecular characterization of heterozygous Cdkl5 +/- mice. We found that Cdkl5 +/- mice reliably recapitulate several aspects of CDKL5 disorder, including autistic-like behaviors, defects in motor coordination and memory performance, and breathing abnormalities. These defects are associated with neuroanatomical alterations, such as reduced dendritic arborization and spine density of hippocampal neurons. Interestingly, Cdkl5 +/- mice show age-related alterations in protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) signaling, two crucial signaling pathways involved in many neurodevelopmental processes. In conclusion, our study provides a comprehensive overview of neurobehavioral phenotypes of heterozygous female Cdkl5 +/- mice and demonstrates that the heterozygous female might be a valuable animal model in preclinical studies on CDKL5 disorder.


Asunto(s)
Encéfalo/metabolismo , Modelos Animales de Enfermedad , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Síndrome de Rett/genética , Espasmos Infantiles/genética , Animales , Conducta Animal , Síndromes Epilépticos , Femenino , Heterocigoto , Ratones Endogámicos C57BL , Ratones Noqueados , Síndrome de Rett/metabolismo , Síndrome de Rett/psicología , Transducción de Señal , Espasmos Infantiles/metabolismo , Espasmos Infantiles/psicología
17.
Am J Physiol Endocrinol Metab ; 315(4): E662-E670, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30040481

RESUMEN

Many small mammals, such as the laboratory mouse, utilize the hypometabolic state of torpor in response to caloric restriction. The signals that relay the lack of fuel to initiate a bout of torpor are not known. Because the mouse will only enter a torpid state when calorically challenged, it may be that one of the inputs for initiation into a bout of torpor is the lack of the primary fuel (glucose) used to power brain metabolism in the mouse. Using glucose telemetry in mice, we tested the hypotheses that 1) circulating glucose (GLC), core body temperature (Tb), and activity are significantly interrelated; and 2) that the level of GLC at the onset of torpor differs from both GLC during arousal from torpor and during feeding when there is no torpor. To test these hypotheses, six C57Bl/6J mice were implanted with glucose telemeters and exposed to different feeding conditions (ad libitum, fasting, limited food intake, and refeeding) to create different levels of GLC and Tb. We found a strong positive and linear correlation between GLC and Tb during ad libitum feeding. Furthermore, mice that were calorically restricted entered torpor bouts readily. GLC was low during torpor entry but did not drop precipitously as Tb did at the onset of a torpor bout. GLC significantly increased during arousal from torpor, indicating the presence of endogenous glucose production. While low GLC itself was not predictive of a bout of torpor, hyperactivity and low GLC preceded the onset of torpor, suggesting that this may be involved in triggering torpor.


Asunto(s)
Glucemia/metabolismo , Temperatura Corporal , Restricción Calórica , Ayuno/metabolismo , Letargo , Animales , Ingestión de Alimentos , Métodos de Alimentación , Masculino , Ratones , Ratones Endogámicos C57BL , Telemetría
18.
Hum Mol Genet ; 27(9): 1572-1592, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29474534

RESUMEN

Cyclin-dependent kinase like-5 (CDKL5) disorder is a rare neurodevelopmental disease caused by mutations in the CDKL5 gene. The consequent misexpression of the CDKL5 protein in the nervous system leads to a severe phenotype characterized by intellectual disability, motor impairment, visual deficits and early-onset epilepsy. No therapy is available for CDKL5 disorder. It has been reported that a protein transduction domain (TAT) is able to deliver macromolecules into cells and even into the brain when fused to a given protein. We demonstrate that TAT-CDKL5 fusion protein is efficiently internalized by target cells and retains CDKL5 activity. Intracerebroventricular infusion of TAT-CDKL5 restored hippocampal development, hippocampus-dependent memory and breathing pattern in Cdkl5-null mice. Notably, systemically administered TAT-CDKL5 protein passed the blood-brain-barrier, reached the CNS, and rescued various neuroanatomical and behavioral defects, including breathing pattern and visual responses. Our results suggest that CDKL5 protein therapy may be an effective clinical tool for the treatment of CDKL5 disorder.


Asunto(s)
Síndromes Epilépticos/metabolismo , Síndromes Epilépticos/terapia , Proteínas Serina-Treonina Quinasas/metabolismo , Espasmos Infantiles/metabolismo , Espasmos Infantiles/terapia , Animales , Encéfalo , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Proteínas Serina-Treonina Quinasas/genética
19.
Front Physiol ; 9: 1818, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30618828

RESUMEN

Restless legs syndrome (RLS) is a neurological disorder that entails an urge to move with a circadian pattern during the evening/night. RLS may be accompanied by decreased sleep time and increased occurrence of periodic leg movements during sleep (PLMS), which involve bursts of tibialis anterior (TA) muscle electromyogram (EMG). Mild hypoxia and non-anemic iron deficiency, a highly prevalent nutritional deficiency, are relatively unexplored factors in RLS pathophysiology. We tested whether mice exposed to mild hypoxia, alone or in combination with non-anemic iron deficiency, show decreased sleep time particularly in the light (rest) period and increased occurrence of TA EMG phasic events similar to human PLMS. Female C57BL/6J mice were fed diets with low or normal iron for 6 months from weaning and instrumented with electrodes to record the electroencephalogram and the EMG of both TA muscles. Mice were recorded in a whole-body plethysmograph while breathing a normoxic or mildly hypoxic (15% O2) gas mixture for 48 h. Hypoxia increased minute ventilation during sleep. The low-iron diet decreased liver and serum iron, leaving blood hemoglobin and brainstem iron levels unaffected. Hypoxia, either alone or in combination with non-anemic iron deficiency, decreased non-rapid-eye-movement (non-REM) sleep time, but this occurred irrespective of the light/dark period and was not associated with increased occurrence of TA EMG events during non-REM sleep. These results do not support the hypothesis that mild hypoxia is sufficient to cause signs of RLS, either alone or in combination with non-anemic iron deficiency, pointing to the necessity of further susceptibility factors.

20.
J Physiol ; 596(4): 591-608, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29266348

RESUMEN

KEY POINTS: While values of arterial pressure during sleep are predictive of cardiovascular risk, the autonomic mechanisms underlying the cardiovascular effects of sleep remain poorly understood. Here, we assess the autonomic mechanisms of the cardiovascular effects of sleep in C57Bl/6J mice, taking advantage of a novel technique for continuous intraperitoneal infusion of autonomic blockers. Our results indicate that non-REM sleep decreases arterial pressure by decreasing sympathetic vasoconstriction, decreases heart rate by balancing parasympathetic activation and sympathetic withdrawal, and increases cardiac baroreflex sensitivity mainly by increasing fluctuations in parasympathetic activity. Our results also indicate that REM sleep increases arterial pressure by increasing sympathetic activity to the heart and blood vessels, and increases heart rate, at least in part, by increasing cardiac sympathetic activity. These results provide a framework for generating and testing hypotheses on cardiovascular derangements during sleep in mouse models and human patients. ABSTRACT: The values of arterial pressure (AP) during sleep predict cardiovascular risk. Sleep exerts similar effects on cardiovascular control in human subjects and mice. We aimed to determine the underlying autonomic mechanisms in 12 C57Bl/6J mice with a novel technique of intraperitoneal infusion of autonomic blockers, while monitoring the electroencephalogram, electromyogram, AP and heart period (HP, i.e. 1/heart rate). In different sessions, we administered atropine methyl nitrate, atenolol and prazosin to block muscarinic cholinergic, ß1 -adrenergic and α1 -adrenergic receptors, respectively, and compared each drug infusion with a matched vehicle infusion. The decrease in AP from wakefulness to non-rapid-eye-movement sleep (N) was abolished by prazosin but was not significantly affected by atropine and atenolol, which, however, blunted the accompanying increase in HP to a similar extent. On passing from N to rapid-eye-movement sleep (R), the increase in AP was significantly blunted by prazosin and atenolol, whereas the accompanying decrease in HP was blunted by atropine and abolished by atenolol. Cardiac baroreflex sensitivity (cBRS, sequence technique) was dramatically decreased by atropine and slightly increased by prazosin. These data indicate that in C57Bl/6J mice, N decreases mean AP by decreasing sympathetic vasoconstriction, increases HP by balancing parasympathetic activation and sympathetic withdrawal, and increases cBRS mainly by increasing fluctuations in parasympathetic activity. R increases mean AP by increasing sympathetic vasoconstriction and cardiac sympathetic activity, which also explains, at least in part, the concomitant decrease in HP. These data represent the first comprehensive assessment of the autonomic mechanisms of cardiovascular control during sleep in mice.


Asunto(s)
Antiarrítmicos/farmacología , Presión Arterial , Sistema Cardiovascular/fisiopatología , Sueño , Vasoconstricción , Animales , Sistema Cardiovascular/efectos de los fármacos , Frecuencia Cardíaca , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Sistema Nervioso Simpático , Vigilia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA