Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Neuroinflammation ; 21(1): 83, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581043

RESUMEN

BACKGROUND: It is well established that traumatic brain injury (TBI) causes acute and chronic alterations in systemic immune function and that systemic immune changes contribute to posttraumatic neuroinflammation and neurodegeneration. However, how TBI affects bone marrow (BM) hematopoietic stem/progenitor cells chronically and to what extent such changes may negatively impact innate immunity and neurological function has not been examined. METHODS: To further understand the role of BM cell derivatives on TBI outcome, we generated BM chimeric mice by transplanting BM from chronically injured or sham (i.e., 90 days post-surgery) congenic donor mice into otherwise healthy, age-matched, irradiated CD45.2 C57BL/6 (WT) hosts. Immune changes were evaluated by flow cytometry, multiplex ELISA, and NanoString technology. Moderate-to-severe TBI was induced by controlled cortical impact injury and neurological function was measured using a battery of behavioral tests. RESULTS: TBI induced chronic alterations in the transcriptome of BM lineage-c-Kit+Sca1+ (LSK+) cells in C57BL/6 mice, including modified epigenetic and senescence pathways. After 8 weeks of reconstitution, peripheral myeloid cells from TBI→WT mice showed significantly higher oxidative stress levels and reduced phagocytic activity. At eight months after reconstitution, TBI→WT chimeric mice were leukopenic, with continued alterations in phagocytosis and oxidative stress responses, as well as persistent neurological deficits. Gene expression analysis revealed BM-driven changes in neuroinflammation and neuropathology after 8 weeks and 8 months of reconstitution, respectively. Chimeric mice subjected to TBI at 8 weeks and 8 months post-reconstitution showed that longer reconstitution periods (i.e., time post-injury) were associated with increased microgliosis and leukocyte infiltration. Pre-treatment with a senolytic agent, ABT-263, significantly improved behavioral performance of aged C57BL/6 mice at baseline, although it did not attenuate neuroinflammation in the acutely injured brain. CONCLUSIONS: TBI causes chronic activation and progressive dysfunction of the BM stem/progenitor cell pool, which drives long-term deficits in hematopoiesis, innate immunity, and neurological function, as well as altered sensitivity to subsequent brain injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Ratones , Animales , Enfermedades Neuroinflamatorias , Ratones Endogámicos C57BL , Lesiones Traumáticas del Encéfalo/patología , Lesiones Encefálicas/patología , Encéfalo/metabolismo
3.
J Neurotrauma ; 41(7-8): 752-770, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37885226

RESUMEN

Patients hospitalized after a moderate or severe traumatic brain injury (TBI) are at increased risk of nosocomial infections, including bacterial pneumonia and other upper respiratory tract infections. Infections represent a secondary immune challenge for vulnerable TBI patients that can lead to increased morbidity and poorer long-term prognosis. This review first describes the clinical significance of infections after TBI, delving into the known mechanisms by which a TBI can alter systemic immunological responses towards an immunosuppressive state, leading to promotion of increased vulnerability to infections. Pulmonary dysfunction resulting from respiratory tract infections is considered in the context of neurotrauma, including the bidirectional relationship between the brain and lungs. Turning to pre-clinical modeling, current laboratory approaches to study experimental TBI and lung infections are reviewed, to highlight findings from the limited key studies to date that have incorporated both insults. Then, practical decisions for the experimental design of animal studies of post-injury infections are discussed. Variables associated with the host animal, the infectious agent (e.g., species, strain, dose, and administration route), as well as the timing of the infection relative to the injury model are important considerations for model development. Together, the purpose of this review is to highlight the significant clinical need for increased pre-clinical research into the two-hit insult of a hospital-acquired infection after TBI to encourage further scientific enquiry in the field.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Infección Hospitalaria , Animales , Humanos , Lesiones Traumáticas del Encéfalo/complicaciones , Modelos Animales de Enfermedad , Hospitales
4.
Res Sq ; 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37790560

RESUMEN

Traumatic brain injury (TBI) causes acute and chronic alterations in systemic immune function which contribute to posttraumatic neuroinflammation and neurodegeneration. However, how TBI affects bone marrow (BM) hematopoietic stem/progenitor cells chronically and to what extent such changes may negatively impact innate immunity and neurological function has not been examined. To further understand the role of BM cell derivatives on TBI outcome, we generated BM chimeric mice by transplanting BM from chronically injured or sham congenic donor mice into otherwise healthy, age-matched, irradiated hosts. After 8 weeks of reconstitution, peripheral myeloid cells from TBI→WT mice showed significantly higher oxidative stress levels and reduced phagocytic activity. At eight months after reconstitution, TBI→WT chimeric mice were leukopenic, with continued alterations in phagocytosis and oxidative stress responses, as well as persistent neurological deficits. Gene expression analysis revealed BM-driven changes in neuroinflammation and neuropathology after 8 weeks and 8 months of reconstitution, respectively. Chimeric mice subjected to TBI showed that longer reconstitution periods were associated with increased microgliosis and leukocyte infiltration. Thus, TBI causes chronic activation and progressive dysfunction of the BM stem/progenitor cell pool, which drives long-term deficits in innate immunity and neurological function, as well as altered sensitivity to subsequent brain injury.

5.
J Neurochem ; 167(2): 129-153, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37759406

RESUMEN

Traumatic brain injury (TBI) is a devastating neurological disorder caused by a physical impact to the brain that promotes diffuse damage and chronic neurodegeneration. Key mechanisms believed to support secondary brain injury include mitochondrial dysfunction and chronic neuroinflammation. Microglia and brain-infiltrating macrophages are responsible for neuroinflammatory cytokine and reactive oxygen species (ROS) production after TBI. Their production is associated with loss of homeostatic microglial functions such as immunosurveillance, phagocytosis, and immune resolution. Beyond providing energy support, mitochondrial metabolic pathways reprogram the pro- and anti-inflammatory machinery in immune cells, providing a critical immunometabolic axis capable of regulating immunologic response to noxious stimuli. In the brain, the capacity to adapt to different environmental stimuli derives, in part, from microglia's ability to recognize and respond to changes in extracellular and intracellular metabolite levels. This capacity is met by an equally plastic metabolism, capable of altering immune function. Microglial pro-inflammatory activation is associated with decreased mitochondrial respiration, whereas anti-inflammatory microglial polarization is supported by increased oxidative metabolism. These metabolic adaptations contribute to neuroimmune responses, placing mitochondria as a central regulator of post-traumatic neuroinflammation. Although it is established that profound neurometabolic changes occur following TBI, key questions related to metabolic shifts in microglia remain unresolved. These include (a) the nature of microglial mitochondrial dysfunction after TBI, (b) the hierarchical positions of different metabolic pathways such as glycolysis, pentose phosphate pathway, glutaminolysis, and lipid oxidation during secondary injury and recovery, and (c) how immunometabolism alters microglial phenotypes, culminating in chronic non-resolving neuroinflammation. In this basic neurochemistry review article, we describe the contributions of immunometabolism to TBI, detail primary evidence of mitochondrial dysfunction and metabolic impairments in microglia and macrophages, discuss how major metabolic pathways contribute to post-traumatic neuroinflammation, and set out future directions toward advancing immunometabolic phenotyping in TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Neuroquímica , Animales , Ratones , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Lesiones Traumáticas del Encéfalo/metabolismo , Antiinflamatorios , Ratones Endogámicos C57BL
6.
Cells ; 12(17)2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37681904

RESUMEN

The transformation of astrocytes into reactive states constitutes a biological response of the central nervous system under a variety of pathological insults. Astrocytes display diverse homeostatic identities that are developmentally predetermined and regionally specified. Upon transformation into reactive states associated with neurodegenerative diseases and other neurological disorders, astrocytes acquire diverse reactive phenotypes. However, it is not clear whether their reactive phenotypes are dictated by region-specific homeostatic identity or by the nature of an insult. To address this question, region-specific gene expression profiling was performed for four brain regions (cortex, hippocampus, thalamus, and hypothalamus) in mice using a custom NanoString panel consisting of selected sets of genes associated with astrocyte functions and their reactivity for five conditions: prion disease, traumatic brain injury, brain ischemia, 5XFAD Alzheimer's disease model and normal aging. Upon transformation into reactive states, genes that are predominantly associated with astrocytes were found to respond to insults in a region-specific manner. Regardless of the nature of the insult or the insult-specificity of astrocyte response, strong correlations between undirected GSA (gene set analysis) scores reporting on astrocyte reactivity and on their homeostatic functions were observed within each individual brain region. The insult-specific gene expression signatures did not separate well from each other and instead partially overlapped, forming continuums. The current study demonstrates that region-specific homeostatic identities of astrocytes are important for defining their response to pathological insults. Within region-specific populations, reactive astrocytes show continuums of gene expression signatures, partially overlapping between individual insults.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Isquemia Encefálica , Animales , Ratones , Astrocitos , Sistema Nervioso Central , Envejecimiento
7.
J Neuroinflammation ; 20(1): 67, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36894951

RESUMEN

Traumatic brain injury (TBI) often results in prolonged or permanent brain dysfunction with over 2.8 million affected annually in the U.S., including over 56,000 deaths, with over 5 million total survivors exhibiting chronic deficits. Mild TBI (also known as concussion) accounts for over 75% of all TBIs every year. Mild TBI is a heterogeneous disorder, and long-term outcomes are dependent on the type and severity of the initial physical event and compounded by secondary pathophysiological consequences, such as reactive astrocytosis, edema, hypoxia, excitotoxicity, and neuroinflammation. Neuroinflammation has gained increasing attention for its role in secondary injury as inflammatory pathways can have both detrimental and beneficial roles. For example, microglia-resident immune cells of the central nervous system (CNS)-influence cell death pathways and may contribute to progressive neurodegeneration but also aid in debris clearance and neuroplasticity. In this review, we will discuss the acute and chronic role of microglia after mild TBI, including critical protective responses, deleterious effects, and how these processes vary over time. These descriptions are contextualized based on interspecies variation, sex differences, and prospects for therapy. We also highlight recent work from our lab that was the first to describe microglial responses out to chronic timepoints after diffuse mild TBI in a clinically relevant large animal model. The scaled head rotational acceleration of our large animal model, paired with the gyrencephalic architecture and appropriate white:gray matter ratio, allows us to produce pathology with the same anatomical patterns and distribution of human TBI, and serves as an exemplary model to examine complex neuroimmune response post-TBI. An improved understanding of microglial influences in TBI could aid in the development of targeted therapeutics to accentuate positive effects while attenuating detrimental post-injury responses over time.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Animales , Femenino , Humanos , Masculino , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Investigación Biomédica Traslacional , Lesiones Traumáticas del Encéfalo/patología , Conmoción Encefálica/complicaciones , Modelos Animales de Enfermedad
8.
Sci Adv ; 9(10): eadd1101, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36888713

RESUMEN

Lipofuscin is an autofluorescent (AF) pigment formed by lipids and misfolded proteins, which accumulates in postmitotic cells with advanced age. Here, we immunophenotyped microglia in the brain of old C57BL/6 mice (>18 months old) and demonstrate that in comparison to young mice, one-third of old microglia are AF, characterized by profound changes in lipid and iron content, phagocytic activity, and oxidative stress. Pharmacological depletion of microglia in old mice eliminated the AF microglia following repopulation and reversed microglial dysfunction. Age-related neurological deficits and neurodegeneration after traumatic brain injury (TBI) were attenuated in old mice lacking AF microglia. Furthermore, increased phagocytic activity, lysosomal burden, and lipid accumulation in microglia persisted for up to 1 year after TBI, were modified by APOE4 genotype, and chronically driven by phagocyte-mediated oxidative stress. Thus, AF may reflect a pathological state in aging microglia associated with increased phagocytosis of neurons and myelin and inflammatory neurodegeneration that can be further accelerated by TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Animales , Ratones , Microglía/metabolismo , Ratones Endogámicos C57BL , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Encéfalo/metabolismo , Fenotipo , Lípidos
9.
Autophagy ; 19(7): 2026-2044, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36652438

RESUMEN

Excessive and prolonged neuroinflammation following traumatic brain injury (TBI) contributes to long-term tissue damage and poor functional outcomes. However, the mechanisms contributing to exacerbated inflammatory responses after brain injury remain poorly understood. Our previous work showed that macroautophagy/autophagy flux is inhibited in neurons following TBI in mice and contributes to neuronal cell death. In the present study, we demonstrate that autophagy is also inhibited in activated microglia and infiltrating macrophages, and that this potentiates injury-induced neuroinflammatory responses. Macrophage/microglia-specific knockout of the essential autophagy gene Becn1 led to overall increase in neuroinflammation after TBI. In particular, we observed excessive activation of the innate immune responses, including both the type-I interferon and inflammasome pathways. Defects in microglial and macrophage autophagy following injury were associated with decreased phagocytic clearance of danger/damage-associated molecular patterns (DAMP) responsible for activation of the cellular innate immune responses. Our data also demonstrated a role for precision autophagy in targeting and degradation of innate immune pathways components, such as the NLRP3 inflammasome. Finally, inhibition of microglial/macrophage autophagy led to increased neurodegeneration and worse long-term cognitive outcomes after TBI. Conversely, increasing autophagy by treatment with rapamycin decreased inflammation and improved outcomes in wild-type mice after TBI. Overall, our work demonstrates that inhibition of autophagy in microglia and infiltrating macrophages contributes to excessive neuroinflammation following brain injury and in the long term may prevent resolution of inflammation and tissue regeneration.Abbreviations: Becn1/BECN1, beclin 1, autophagy related; CCI, controlled cortical impact; Cybb/CYBB/NOX2: cytochrome b-245, beta polypeptide; DAMP, danger/damage-associated molecular patterns; Il1b/IL1B/Il-1ß, interleukin 1 beta; LAP, LC3-associated phagocytosis; Map1lc3b/MAP1LC3/LC3, microtubule-associated protein 1 light chain 3 beta; Mefv/MEFV/TRIM20: Mediterranean fever; Nos2/NOS2/iNOS: nitric oxide synthase 2, inducible; Nlrp3/NLRP3, NLR family, pyrin domain containing 3; Sqstm1/SQSTM1/p62, sequestosome 1; TBI, traumatic brain injury; Tnf/TNF/TNF-α, tumor necrosis factor; Ulk1/ULK1, unc-51 like kinase 1.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Microglía , Ratones , Animales , Microglía/metabolismo , Autofagia/fisiología , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedades Neuroinflamatorias , Macrófagos/metabolismo , Inmunidad Innata , Inflamación/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Ratones Endogámicos C57BL
10.
Exp Neurol ; 357: 114199, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35952763

RESUMEN

The severity and long-term consequences of brain damage in traumatic brain injured (TBI) patients urgently calls for better neuroprotective/neuroreparative strategies for this devastating disorder. Mesenchymal stromal cells (MSCs) hold great promise and have been shown to confer neuroprotection in experimental TBI, mainly through paracrine mechanisms via secreted bioactive factors (i.e. secretome), which indicates significant potential for a cell-free neuroprotective approach. The secretome is composed of cytokines, chemokines, growth factors, proteins, lipids, nucleic acids, metabolites, and extracellular vesicles; it may offer advantages over MSCs in terms of delivery, safety, and variability of therapeutic response for brain injury. Immunomodulation by molecular factors secreted by MSCs is considered to be a key mechanism involved in their multi-potential therapeutic effects. Regulated neuroinflammation is required for healthy remodeling of central nervous system during development and adulthood. Moreover, immune cells and their secreted factors can also contribute to tissue repair and neurological recovery following acute brain injury. However, a chronic and maladaptive neuroinflammatory response can exacerbate TBI and contribute to progressive neurodegeneration and long-term neurological impairments. Here, we review the evidence for MSC-derived secretome as a therapy for TBI. Our framework incorporates a detailed analysis of in vitro and in vivo studies investigating the effects of the secretome on clinically relevant neurological and histopathological outcomes. We also describe the activation of immune cells after TBI and the immunomodulatory properties exerted by mediators released in the secretome. We then describe how ageing modifies central and systemic immune responses to TBI and discuss challenges and opportunities of developing secretome based neuroprotective therapies for elderly TBI populations. Finally, strategies aimed at modulating the secretome in order to boost its efficacy for TBI will also be discussed.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Células Madre Mesenquimatosas , Adulto , Anciano , Lesiones Encefálicas/patología , Lesiones Traumáticas del Encéfalo/patología , Humanos , Inmunidad , Inmunomodulación , Células Madre Mesenquimatosas/metabolismo , Secretoma
12.
Front Immunol ; 12: 710608, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504493

RESUMEN

Aging adversely affects inflammatory processes in the brain, which has important implications in the progression of neurodegenerative disease. Following traumatic brain injury (TBI), aged animals exhibit worsened neurological function and exacerbated microglial-associated neuroinflammation. Type I Interferons (IFN-I) contribute to the development of TBI neuropathology. Further, the Cyclic GMP-AMP Synthase (cGAS) and Stimulator of Interferon Genes (STING) pathway, a key inducer of IFN-I responses, has been implicated in neuroinflammatory activity in several age-related neurodegenerative diseases. Here, we set out to investigate the effects of TBI on cGAS/STING activation, IFN-I signaling and neuroinflammation in young and aged C57Bl/6 male mice. Using a controlled cortical impact model, we evaluated transcriptomic changes in the injured cortex at 24 hours post-injury, and confirmed activation of key neuroinflammatory pathways in biochemical studies. TBI induced changes were highly enriched for transcripts that were involved in inflammatory responses to stress and host defense. Deeper analysis revealed that TBI increased expression of IFN-I related genes (e.g. Ifnb1, Irf7, Ifi204, Isg15) and IFN-I signaling in the injured cortex of aged compared to young mice. There was also a significant age-related increase in the activation of the DNA-recognition pathway, cGAS, which is a key mechanism to propagate IFN-I responses. Finally, enhanced IFN-I signaling in the aged TBI brain was confirmed by increased phosphorylation of STAT1, an important IFN-I effector molecule. This age-related activation of cGAS and IFN-I signaling may prove to be a mechanistic link between microglial-associated neuroinflammation and neurodegeneration in the aged TBI brain.


Asunto(s)
Envejecimiento/inmunología , Lesiones Traumáticas del Encéfalo/inmunología , Interferón Tipo I/fisiología , Nucleotidiltransferasas/metabolismo , Envejecimiento/metabolismo , Animales , Activación Enzimática , Interferón Tipo I/genética , Masculino , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Microglía/fisiología , Enfermedades Neurodegenerativas/etiología , Enfermedades Neuroinflamatorias/etiología , Transducción de Señal/fisiología
13.
J Clin Invest ; 131(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34128471

RESUMEN

Traumatic brain injury (TBI) is a chronic and progressive disease, and management requires an understanding of both the primary neurological injury and the secondary sequelae that affect peripheral organs, including the gastrointestinal (GI) tract. The brain-gut axis is composed of bidirectional pathways through which TBI-induced neuroinflammation and neurodegeneration impact gut function. The resulting TBI-induced dysautonomia and systemic inflammation contribute to the secondary GI events, including dysmotility and increased mucosal permeability. These effects shape, and are shaped by, changes in microbiota composition and activation of resident and recruited immune cells. Microbial products and immune cell mediators in turn modulate brain-gut activity. Importantly, secondary enteric inflammatory challenges prolong systemic inflammation and worsen TBI-induced neuropathology and neurobehavioral deficits. The importance of brain-gut communication in maintaining GI homeostasis highlights it as a viable therapeutic target for TBI. Currently, treatments directed toward dysautonomia, dysbiosis, and/or systemic inflammation offer the most promise.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Encéfalo , Microbioma Gastrointestinal , Mucosa Intestinal , Animales , Encéfalo/metabolismo , Encéfalo/microbiología , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/microbiología , Lesiones Traumáticas del Encéfalo/patología , Humanos , Inflamación/metabolismo , Inflamación/microbiología , Inflamación/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología
14.
J Neuroinflammation ; 18(1): 24, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33461596

RESUMEN

BACKGROUND: Disruptions of brain-gut axis have been implicated in the progression of a variety of gastrointestinal (GI) disorders and central nervous system (CNS) diseases and injuries, including traumatic brain injury (TBI). TBI is a chronic disease process characterized by persistent secondary injury processes which can be exacerbated by subsequent challenges. Enteric pathogen infection during chronic TBI worsened cortical lesion volume; however, the pathophysiological mechanisms underlying the damaging effects of enteric challenge during chronic TBI remain unknown. This preclinical study examined the effect of intestinal inflammation during chronic TBI on associated neurobehavioral and neuropathological outcomes, systemic inflammation, and dysautonomia. METHODS: Dextran sodium sulfate (DSS) was administered to adult male C57BL/6NCrl mice 28 days following craniotomy (Sham) or TBI for 7 days to induce intestinal inflammation, followed by a return to normal drinking water for an additional 7 to 28 days for recovery; uninjured animals (Naïve) served as an additional control group. Behavioral testing was carried out prior to, during, and following DSS administration to assess changes in motor and cognitive function, social behavior, and mood. Electrocardiography was performed to examine autonomic balance. Brains were collected for histological and molecular analyses of injury lesion, neurodegeneration, and neuroinflammation. Blood, colons, spleens, mesenteric lymph nodes (mLNs), and thymus were collected for morphometric analyses and/or immune characterization by flow cytometry. RESULTS: Intestinal inflammation 28 days after craniotomy or TBI persistently induced, or exacerbated, respectively, deficits in fine motor coordination, cognition, social behavior, and anxiety-like behavior. Behavioral changes were associated with an induction, or exacerbation, of hippocampal neuronal cell loss and microglial activation in Sham and TBI mice administered DSS, respectively. Acute DSS administration resulted in a sustained systemic immune response with increases in myeloid cells in blood and spleen, as well as myeloid cells and lymphocytes in mesenteric lymph nodes. Dysautonomia was also induced in Sham and TBI mice administered DSS, with increased sympathetic tone beginning during DSS administration and persisting through the first recovery week. CONCLUSION: Intestinal inflammation during chronic experimental TBI causes a sustained systemic immune response and altered autonomic balance that are associated with microglial activation, increased neurodegeneration, and persistent neurological deficits.


Asunto(s)
Lesiones Traumáticas del Encéfalo/complicaciones , Colitis/complicaciones , Disautonomías Primarias/etiología , Animales , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/inmunología , Lesiones Traumáticas del Encéfalo/patología , Colitis/inmunología , Colitis/patología , Modelos Animales de Enfermedad , Inflamación/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroinmunomodulación/fisiología , Disautonomías Primarias/fisiopatología
15.
J Neurochem ; 156(2): 225-248, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31926033

RESUMEN

We have previously shown that treatment with a mGluR5 positive allosteric modulator (PAM) is neuroprotective after experimental traumatic brain injury (TBI), limiting post-traumatic neuroinflammation by reducing pro-inflammatory microglial activation and promoting anti-inflammatory and neuroprotective responses. However, the specific molecular mechanisms governing this anti-inflammatory shift in microglia remain unknown. Here we show that the mGluR5 PAM, VU0360172 (VuPAM), regulates microglial inflammatory responses through activation of Akt, resulting in the inhibition of GSK-3ß. GSK-3ß regulates the phosphorylation of CREB, thereby controlling the expression of inflammation-related genes and microglial plasticity. The anti-inflammatory action of VuPAM in microglia is reversed by inhibiting Akt/GSK-3ß/CREB signaling. Using a well-characterized TBI model and CX3CR1gfp/+ mice to visualize microglia in vivo, we demonstrate that VuPAM enhances Akt/GSK-3ß/CREB signaling in the injured cortex, as well as anti-inflammatory microglial markers. Furthermore, in situ analysis revealed that GFP + microglia in the cortex of VuPAM-treated TBI mice co-express pCREB and the anti-inflammatory microglial phenotype marker YM1. Taken together, our data show that VuPAM decreases pro-inflammatory microglial activation by modulating Akt/GSK-3ß/CREB signaling. These findings serve to clarify the potential neuroprotective mechanisms of mGluR5 PAM treatment after TBI, and suggest novel therapeutic targets for post-traumatic neuroinflammation. Cover Image for this issue: https://doi.org/10.1111/jnc.15048.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Microglía/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Niacinamida/análogos & derivados , Receptor del Glutamato Metabotropico 5/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Masculino , Ratones , Microglía/metabolismo , Niacinamida/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor del Glutamato Metabotropico 5/metabolismo , Transducción de Señal/fisiología
17.
J Neurotrauma ; 38(10): 1399-1410, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33297844

RESUMEN

Traumatic brain injury (TBI) is an extremely complex condition due to heterogeneity in injury mechanism, underlying conditions, and secondary injury. Pre-clinical and clinical researchers face challenges with reproducibility that negatively impact translation and therapeutic development for improved TBI patient outcomes. To address this challenge, TBI Pre-clinical Working Groups expanded upon previous efforts and developed common data elements (CDEs) to describe the most frequently used experimental parameters. The working groups created 913 CDEs to describe study metadata, animal characteristics, animal history, injury models, and behavioral tests. Use cases applied a set of commonly used CDEs to address and evaluate the degree of missing data resulting from combining legacy data from different laboratories for two different outcome measures (Morris water maze [MWM]; RotorRod/Rotarod). Data were cleaned and harmonized to Form Structures containing the relevant CDEs and subjected to missing value analysis. For the MWM dataset (358 animals from five studies, 44 CDEs), 50% of the CDEs contained at least one missing value, while for the Rotarod dataset (97 animals from three studies, 48 CDEs), over 60% of CDEs contained at least one missing value. Overall, 35% of values were missing across the MWM dataset, and 33% of values were missing for the Rotarod dataset, demonstrating both the feasibility and the challenge of combining legacy datasets using CDEs. The CDEs and the associated forms created here are available to the broader pre-clinical research community to promote consistent and comprehensive data acquisition, as well as to facilitate data sharing and formation of data repositories. In addition to addressing the challenge of standardization in TBI pre-clinical studies, this effort is intended to bring attention to the discrepancies in assessment and outcome metrics among pre-clinical laboratories and ultimately accelerate translation to clinical research.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Elementos de Datos Comunes/normas , Modelos Animales de Enfermedad , Animales
18.
Theranostics ; 10(25): 11376-11403, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33052221

RESUMEN

Neuropsychological deficits, including impairments in learning and memory, occur after spinal cord injury (SCI). In experimental SCI models, we and others have reported that such changes reflect sustained microglia activation in the brain that is associated with progressive neurodegeneration. In the present study, we examined the effect of pharmacological depletion of microglia on posttraumatic cognition, depressive-like behavior, and brain pathology after SCI in mice. Methods: Young adult male C57BL/6 mice were subjected to moderate/severe thoracic spinal cord contusion. Microglial depletion was induced with the colony-stimulating factor 1 receptor (CSF1R) antagonist PLX5622 administered starting either 3 weeks before injury or one day post-injury and continuing through 6 weeks after SCI. Neuroinflammation in the injured spinal cord and brain was assessed using flow cytometry and NanoString technology. Neurological function was evaluated using a battery of neurobehavioral tests including motor function, cognition, and depression. Lesion volume and neuronal counts were quantified by unbiased stereology. Results: Flow cytometry analysis demonstrated that PLX5622 pre-treatment significantly reduced the number of microglia, as well as infiltrating monocytes and neutrophils, and decreased reactive oxygen species production in these cells from injured spinal cord at 2-days post-injury. Post-injury PLX5622 treatment reduced both CD45int microglia and CD45hi myeloid counts at 7-days. Following six weeks of PLX5622 treatment, there were substantial changes in the spinal cord and brain transcriptomes, including those involved in neuroinflammation. These alterations were associated with improved neuronal survival in the brain and neurological recovery. Conclusion: These findings indicate that pharmacological microglia-deletion reduces neuroinflammation in the injured spinal cord and brain, improving recovery of cognition, depressive-like behavior, and motor function.


Asunto(s)
Encéfalo/efectos de los fármacos , Disfunción Cognitiva/prevención & control , Microglía/efectos de los fármacos , Compuestos Orgánicos/administración & dosificación , Traumatismos de la Médula Espinal/tratamiento farmacológico , Administración Oral , Animales , Técnicas de Observación Conductual , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Encéfalo/citología , Encéfalo/inmunología , Encéfalo/patología , Disfunción Cognitiva/inmunología , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Depresión/diagnóstico , Depresión/etiología , Depresión/prevención & control , Modelos Animales de Enfermedad , Humanos , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/fisiopatología , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Masculino , Memoria/efectos de los fármacos , Memoria/fisiología , Ratones , Microglía/inmunología , Microglía/patología , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Especies Reactivas de Oxígeno/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/inmunología , Médula Espinal/patología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/inmunología , Traumatismos de la Médula Espinal/patología
19.
J Neurotrauma ; 37(24): 2709-2717, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32484024

RESUMEN

Traumatic brain injury (TBI) patients are reported to experience long-term sensorimotor dysfunction, with gait deficits evident up to 2 years after the initial brain trauma. Experimental TBI including rodent models of penetrating ballistic-like brain injury and severe controlled cortical impact (CCI) can induce impairments in static and dynamic gait parameters. It is reported that the majority of deficits in gait-related parameters occur during the acute phase post-injury, as functional outcomes return toward baseline levels at chronic time points. In the present study, we carried out a longitudinal analysis of static, temporal and dynamic gait patterns following moderate-level CCI in adult male C57Bl/6J mice using the automated gait analysis apparatus, CatWalk. For comparison, we also performed longitudinal assessment of fine-motor coordination and function in CCI mice using more traditional sensorimotor behavioral tasks such as the beamwalk and accelerating rotarod tasks. We determined that longitudinal CatWalk analysis did not detect TBI-induced deficits in static, temporal, or dynamic gait parameters at acute or chronic time points. In contrast, the rotarod and beamwalk tasks showed that CCI mice had significant motor function impairments as demonstrated by deficits in balance and fine-motor coordination through 28 days post-injury. Stereological analysis confirmed that CCI produced a significant lesion in the parietal cortex at 28 days post-injury. Overall, these findings demonstrate that CatWalk analysis of gait parameters is not useful for assessment of long-term sensorimotor dysfunction after CCI, and that more traditional neurobehavioral tests should be used to quantify acute and chronic deficits in sensorimotor function.


Asunto(s)
Lesiones Traumáticas del Encéfalo/complicaciones , Análisis de la Marcha/métodos , Trastornos Psicomotores/etiología , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Desempeño Psicomotor
20.
Neurochem Int ; 138: 104770, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32454165

RESUMEN

Chronic dysregulated microglial activation may lead to persistent inflammation and progressive neurodegeneration. A previous study reported that ADX88178, a putative metabotropic glutamate receptor 4 (mGluR4) positive allosteric modulator (PAM), exerts anti-inflammatory effects in microglia by activating mGluR4. We employed in vitro models of immortalized microglia cell lines and primary microglia to elucidate the molecular mechanisms responsible for the regulation of inflammatory pathways by ADX88178 and other mGluR4 PAMs. ADX88178 downregulated lipopolysaccharide (LPS)-induced expression of pro-inflammatory mediators, including TNF-α, IL-1ß, CCL-2, IL-6, NOS2, and miR-155, as well as NO levels, in BV2 cells and primary microglia. Other mGluR4 modulators had divergent activities; VU0361737 (PAM) showed anti-inflammatory effects, whereas the orthosteric group III agonist, L-AP4, and VU0155041 (PAM) displayed no anti-inflammatory actions. In contrast to the earlier report, ADX88178 anti-inflammatory effects appeared to be mGluR4-independent as mGluR4 expression in our in vitro models was very low and its actions were not altered by pharmacological or molecular inhibition of mGluR4. Moreover, we showed that ADX88178 activated Gi-independent, alternative signaling pathways as indicated by the absence of pertussis toxin-mediated inhibition and by increased phosphorylation of cAMP-response element binding protein (CREB), an inhibitor of the NFkB pro-inflammatory pathway. ADX88178 also attenuated NFkB activation by reducing the degradation of IkB and the associated translocation of NFkB-p65 to the nucleus. ADX88178 did not exert its anti-inflammatory effects through adenosine receptors, reported as mGluR4 heteromerization partners. Thus, our results indicate that in microglia, putative mGluR4 PAMs activate mGluR4/Gi-independent mechanisms to attenuate pro-inflammatory pathways.


Asunto(s)
Antiinflamatorios/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Pirimidinas/farmacología , Receptores de Glutamato Metabotrópico/metabolismo , Tiazoles/farmacología , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Animales Recién Nacidos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores de Glutamato Metabotrópico/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA