RESUMEN
Historically, obesity has been identified as one of the most important risk factors for developing cardiovascular diseases including stroke; however, a theory called "The Obesity Paradox" has been recently considered. The paradoxical theory is that obese or overweight patients (according to body mass index score) can have better outcomes compared to leaner or malnourished patients. The paradox was initially discovered in patients with heart failure. The purpose of this manuscript was to investigate whether this paradox also applies to stroke patients, according to information available in the current literature.
RESUMEN
OBJECTIVE: Glaze application on monolithic zirconia (Y-TZP) can be a practical approach to improve the mechanical properties of this material. Our study evaluated the effect of glazing side and mechanical cycling on the biaxial flexure strength (BFS) of a Y-TZP. METHODOLOGY: Eighty sintered Y-TZP discs (Ø:12 mm; thickness: 1.2 mm - ISO 6872) were produced and randomly assigned into eight groups (n=10), according to the factors "glazing side" (control - no glazing; GT - glaze on tensile side; GC - glaze on compression side; GTC - glaze on both sides) and "mechanical aging" (non-aged and aged, A - mechanical cycling: 1.2×106, 84 N, 3 Hz, under water at 37°C). Specimens were subjected to BFS test (1 mm/min; 1,000 Kgf load cell) and fractured surfaces were analyzed by stereomicroscopy and SEM. Hsueh's rigorous solutions were used to estimate the stress at failure of glazed specimens. Two-way ANOVA, Tukey's test (5%), and Weibull analysis were performed. RESULTS: The "glazing side", "mechanical aging" and the interaction of the factors were significant (p<0.05). Groups GC (1157.9±146.9 MPa), GT (1156.1±195.3 MPa), GTC (986.0±187.4 MPa) and GTC-A (1131.9±128.9 MPa) presented higher BFS than control groups (Tukey, 5%). Hsueh's rigorous solutions showed that the maximum tensile stress was presented in the bottom of zirconia layer, at the zirconia/glaze interface. Weibull characteristic strength (σo) of the GC was higher than all groups (p<0.05), except to GT, GTC-A and GTC, which were similar among them. The fractography showed initiation of failures from zirconia the tensile side regardless of the side of glaze application and fatigue. CONCLUSION: Glazing zirconia applied on both tensile and compression sides improves the flexural strength of Y-TZP, regardless the mechanical aging.
Asunto(s)
Porcelana Dental , Resistencia Flexional , Circonio , Cerámica , Ensayo de Materiales , Estrés Mecánico , Propiedades de Superficie , ItrioRESUMEN
Abstract Glaze application on monolithic zirconia (Y-TZP) can be a practical approach to improve the mechanical properties of this material. Objective Our study evaluated the effect of glazing side and mechanical cycling on the biaxial flexure strength (BFS) of a Y-TZP. Methodology Eighty sintered Y-TZP discs (Ø:12 mm; thickness: 1.2 mm - ISO 6872) were produced and randomly assigned into eight groups (n=10), according to the factors "glazing side" (control - no glazing; GT - glaze on tensile side; GC - glaze on compression side; GTC - glaze on both sides) and "mechanical aging" (non-aged and aged, A - mechanical cycling: 1.2×106, 84 N, 3 Hz, under water at 37°C). Specimens were subjected to BFS test (1 mm/min; 1,000 Kgf load cell) and fractured surfaces were analyzed by stereomicroscopy and SEM. Hsueh's rigorous solutions were used to estimate the stress at failure of glazed specimens. Two-way ANOVA, Tukey's test (5%), and Weibull analysis were performed. Results The "glazing side", "mechanical aging" and the interaction of the factors were significant (p<0.05). Groups GC (1157.9±146.9 MPa), GT (1156.1±195.3 MPa), GTC (986.0±187.4 MPa) and GTC-A (1131.9±128.9 MPa) presented higher BFS than control groups (Tukey, 5%). Hsueh's rigorous solutions showed that the maximum tensile stress was presented in the bottom of zirconia layer, at the zirconia/glaze interface. Weibull characteristic strength (σo) of the GC was higher than all groups (p<0.05), except to GT, GTC-A and GTC, which were similar among them. The fractography showed initiation of failures from zirconia the tensile side regardless of the side of glaze application and fatigue. Conclusion Glazing zirconia applied on both tensile and compression sides improves the flexural strength of Y-TZP, regardless the mechanical aging.
Asunto(s)
Circonio , Porcelana Dental , Resistencia Flexional , Estrés Mecánico , Propiedades de Superficie , Itrio , Ensayo de Materiales , CerámicaRESUMEN
The effects of several ceramic surface treatments on bond strength of a polymer-infiltrated ceramic network and resin composite as repair material were evaluated. CAD-CAM blocks of a polymer-infiltrated ceramic network (Vita Enamic) were sliced and subjected to aging process, followed by embedding in acrylic resin. The bonding/repair area was treated as follows (n = 30): C- without treatment; UA- universal adhesive application; FM- 10% hydrofluoric acid and silane application; OM-airborne-particle abrasion with aluminum oxide and silane application; RP- tribochemical silica coating; and CA- surface grinding and application of universal adhesive. Composite resin cylinders were made on the treated surface. Specimens from each group were assigned randomly to two subgroups (n = 15) considering storage condition: Baseline (shear tests after 48 hours) or Storage (tests after 6 months under distilled water). The treated surfaces were analyzed by goniometry, roughness, and SEM. Two-way ANOVA and 1-way ANOVA were applied to analyze the bond data and roughness / contact angle data, respectively, followed by Tukey's test (α = 5%). Surface treatments and storage conditions affected bond strengths (p < 0.01). Surface grinding (CA) followed by universal adhesive promoted the highest value of bond strength (14.5 ± 4.8 MPa for baseline, 8.5 ± 3.4 MPa for storage) and the roughest ceramic surface. Grinding with silicon carbide paper (simulating diamond bur) followed by the application of a universal adhesive system is the best option for repairing fractures of the polymer-infiltrated ceramic network.
Asunto(s)
Cerámica/química , Resinas Compuestas/química , Recubrimiento Dental Adhesivo/métodos , Polímeros/química , Análisis de Varianza , Diseño Asistido por Computadora , Fracaso de la Restauración Dental , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Valores de Referencia , Reproducibilidad de los Resultados , Resistencia al Corte/efectos de los fármacos , Propiedades de Superficie/efectos de los fármacos , Factores de TiempoRESUMEN
Abstract: The effects of several ceramic surface treatments on bond strength of a polymer-infiltrated ceramic network and resin composite as repair material were evaluated. CAD-CAM blocks of a polymer-infiltrated ceramic network (Vita Enamic) were sliced and subjected to aging process, followed by embedding in acrylic resin. The bonding/repair area was treated as follows (n = 30): C- without treatment; UA- universal adhesive application; FM- 10% hydrofluoric acid and silane application; OM-airborne-particle abrasion with aluminum oxide and silane application; RP- tribochemical silica coating; and CA- surface grinding and application of universal adhesive. Composite resin cylinders were made on the treated surface. Specimens from each group were assigned randomly to two subgroups (n = 15) considering storage condition: Baseline (shear tests after 48 hours) or Storage (tests after 6 months under distilled water). The treated surfaces were analyzed by goniometry, roughness, and SEM. Two-way ANOVA and 1-way ANOVA were applied to analyze the bond data and roughness / contact angle data, respectively, followed by Tukey's test (α = 5%). Surface treatments and storage conditions affected bond strengths (p < 0.01). Surface grinding (CA) followed by universal adhesive promoted the highest value of bond strength (14.5 ± 4.8 MPa for baseline, 8.5 ± 3.4 MPa for storage) and the roughest ceramic surface. Grinding with silicon carbide paper (simulating diamond bur) followed by the application of a universal adhesive system is the best option for repairing fractures of the polymer-infiltrated ceramic network.
Asunto(s)
Cerámica/química , Resinas Compuestas/química , Recubrimiento Dental Adhesivo/métodos , Polímeros/química , Análisis de Varianza , Diseño Asistido por Computadora , Fracaso de la Restauración Dental , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Valores de Referencia , Reproducibilidad de los Resultados , Resistencia al Corte/efectos de los fármacos , Propiedades de Superficie/efectos de los fármacos , Factores de TiempoRESUMEN
Este trabalho tem por objetivo discutir o lugar do ambulatório na atual Rede de Saúde Mental. Para isso, faz uma análise do processo de transformação do modelo de atenção presente no ambulatório tradicional para o modelo de atenção ambulatorial proposto pela Reforma Psiquiátrica. A partir da discussão de diversos autores e da experiência do ambulatório da cidade de Rio das Ostras, se propõe nesta pesquisa refletir os principais desafios e dificuldades enfrentadas pelos serviços ambulatoriais para a promoção de um cuidado integral diante da complexidade do campo da Saúde Mental.
Asunto(s)
Humanos , Atención Ambulatoria/organización & administración , Atención a la Salud Mental , Atención a la Salud , Salud Mental , Servicio Ambulatorio en Hospital , Reforma de la Atención de Salud/organización & administraciónRESUMEN
Glutamine behaves as a key nutrient for tumors and rapidly dividing cells. Glutaminase is the main glutamine-utilizing enzyme in these cells, and its activity correlates with glutamine consumption and growth rate. We have carried out the antisense L-type glutaminase inhibition in human MCF7 breast cancer cells, in order to study its effect on the hexosamine pathway and the pattern of protein O-glycosylation. The antisense mRNA glutaminase expressing cells, named ORF19, presented a 50% lower proliferation rate than parental cells, showing a more differentiated phenotype. ORF19 cells had an 80% reduction in glutamine:fructose-6-P amidotransferase activity, which is the rate-limiting step of the hexosamine pathway. Although the overall cellular protein O-glycosylation did not change, the O-glycosylation status of several key proteins was altered. O-glycosylation of O-GlcNAc transferase (OGT), the enzyme that links N-acetylglucosamine to proteins, was fivefold lower in ORF19 than in wild type cells. Inhibition of glutaminase also provoked a 10-fold increase in Sp1 expression, and a significant decrease in the ratio of O-glycosylated to total protein for both Sp1 and the Rpt2 proteasome component. These changes were accompanied by a higher Sp1 transcriptional activity. Proteome analysis of O-glycosylated proteins permitted the detection of two new OGT target proteins: the chaperonin TCP-1 theta and the oncogene Ets-related protein isoform 7. Taken together, our results support the hexosamine pathway and the O-glycosylation of proteins being a sensor mechanism of the nutritional and energetic states of the cell.