Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Front Bioeng Biotechnol ; 11: 1208561, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744246

RESUMEN

Introduction: Tuning the control parameters is one of the main challenges in robotic gait therapy. Control strategies that vary the control parameters based on the user's performance are still scarce and do not exploit the potential of using spatiotemporal metrics. The goal of this study was to validate the feasibility of using shank-worn Inertial Measurement Units (IMUs) for clinical gait analysis after stroke and evaluate their preliminary applicability in designing an automatic and adaptive controller for a knee exoskeleton (ABLE-KS). Methods: First, we estimated the temporal (i.e., stride time, stance, and swing duration) and spatial (i.e., stride length, maximum vertical displacement, foot clearance, and circumduction) metrics in six post-stroke participants while walking on a treadmill and overground and compared these estimates with data from an optical motion tracking system. Next, we analyzed the relationships between the IMU-estimated metrics and an exoskeleton control parameter related to the peak knee flexion torque. Finally, we trained two machine learning algorithms, i.e., linear regression and neural network, to model the relationship between the exoskeleton torque and maximum vertical displacement, which was the metric that showed the strongest correlations with the data from the optical system [r = 0.84; ICC(A,1) = 0.73; ICC(C,1) = 0.81] and peak knee flexion torque (r = 0.957). Results: Offline validation of both neural network and linear regression models showed good predictions (R2 = 0.70-0.80; MAE = 0.48-0.58 Nm) of the peak torque based on the maximum vertical displacement metric for the participants with better gait function, i.e., gait speed > 0.7 m/s. For the participants with worse gait function, both models failed to provide good predictions (R2 = 0.00-0.19; MAE = 1.15-1.29 Nm) of the peak torque despite having a moderate-to-strong correlation between the spatiotemporal metric and control parameter. Discussion: Our preliminary results indicate that the stride-by-stride estimations of shank-worn IMUs show potential to design automatic and adaptive exoskeleton control strategies for people with moderate impairments in gait function due to stroke.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37556332

RESUMEN

Studies on robotic interventions for gait rehabilitation after stroke require: (i) rigorous performance evidence; (ii) systematic procedures to tune the control parameters; and (iii) combination of control modes. In this study, we investigated how stroke individuals responded to training for two weeks with a knee exoskeleton (ABLE-KS) using both Assistance and Resistance training modes together with auditory feedback to train peak knee flexion angle. During the training, the torque provided by the ABLE-KS and the biofeedback were systematically adapted based on the subject's performance and perceived exertion level. We carried out a comprehensive experimental analysis that evaluated a wide range of biomechanical metrics, together with usability and users' perception metrics. We found significant improvements in peak knee flexion ( p = 0.0016 ), minimum knee angle during stance ( p = 0.0053 ), paretic single support time ( p = 0.0087 ) and gait endurance ( p = 0.022 ) when walking without the exoskeleton after the two weeks of training. Participants significantly ( ) improved the knee angle during the stance and swing phases when walking with the exoskeleton powered in the high Assistance mode in comparison to the No Exo and the Unpowered conditions. No clinically relevant differences were found between Assistance and Resistance training sessions. Participants improved their performance with the exoskeleton (24-55 %) for the peak knee flexion angle throughout the training sessions. Moreover, participants showed a high level of acceptability of the ABLE-KS (QUEST 2.0 score: 4.5 ± 0.3 out of 5). Our preliminary findings suggest that the proposed training approach can produce similar or larger improvements in post-stroke individuals than other studies with knee exoskeletons that used higher training intensities.


Asunto(s)
Dispositivo Exoesqueleto , Entrenamiento de Fuerza , Rehabilitación de Accidente Cerebrovascular , Humanos , Fenómenos Biomecánicos , Articulación de la Rodilla , Rodilla , Caminata , Marcha
3.
J Neuroeng Rehabil ; 20(1): 45, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37046307

RESUMEN

BACKGROUND: Robotic lower-limb exoskeletons have the potential to provide additional clinical benefits for persons with spinal cord injury (SCI). However, high variability between protocols does not allow the comparison of study results on safety and feasibility between different exoskeletons. We therefore incorporated key aspects from previous studies into our study protocol and accordingly conducted a multicentre study investigating the safety, feasibility and usability of the ABLE Exoskeleton in clinical settings. METHODS: In this prospective pretest-posttest quasi-experimental study across two SCI centres in Germany and Spain, in- and outpatients with SCI were recruited into a 12-session training and assessment protocol, utilising the ABLE Exoskeleton. A follow-up visit after 4 weeks was included to assess after-training outcomes. Safety outcomes (device-related adverse events (AEs), number of drop-outs), feasibility and usability measures (level of assistance, donning/doffing-time) were recorded at every session together with changes in gait parameters and function. Patient-reported outcome measures including the rate of perceived exertion (RPE) and the psychosocial impact of the device were performed. Satisfaction with the device was evaluated in both participants and therapists. RESULTS: All 24 participants (45 ± 12 years), with mainly subacute SCI (< 1 year after injury) from C5 to L3, (ASIA Impairment Scale A to D) completed the follow-up. In 242 training sessions, 8 device-related AEs (pain and skin lesions) were reported. Total time for don and doff was 6:50 ± 2:50 min. Improvements in level of assistance and gait parameters (time, steps, distance and speed, p < 0.05) were observed in all participants. Walking function and RPE improved in participants able to complete walking tests with (n = 9) and without (n = 6) the device at study start (p < 0.05). A positive psychosocial impact of the exoskeleton was reported and the satisfaction with the device was good, with best ratings in safety (participants), weight (therapists), durability and dimensions (both). CONCLUSIONS: Our study results prove the feasibility of safe gait training with the ABLE Exoskeleton in hospital settings for persons with SCI, with improved clinical outcomes after training. Our study protocol allowed for consistent comparison of the results with other exoskeleton trials and can serve as a future framework towards the standardisation of early clinical evaluations. Trial Registration https://trialsearch.who.int/ , DRKS00023503, retrospectively registered on November 18, 2020.


Asunto(s)
Dispositivo Exoesqueleto , Traumatismos de la Médula Espinal , Humanos , Estudios Prospectivos , Estudios de Factibilidad , Caminata
4.
J Neuroeng Rehabil ; 20(1): 23, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36805777

RESUMEN

BACKGROUND: In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes. METHODS: Four databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy. RESULTS: (1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke. CONCLUSIONS: Despite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients' specific pathology outperform current control strategies.


Asunto(s)
Lesiones Encefálicas , Dispositivo Exoesqueleto , Rehabilitación Neurológica , Robótica , Humanos , Resultado del Tratamiento
5.
Sci Rep ; 12(1): 19150, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351989

RESUMEN

Recovering the ability to stand and walk independently can have numerous health benefits for people with spinal cord injury (SCI). Wearable exoskeletons are being considered as a promising alternative to conventional knee-ankle-foot orthoses (KAFOs) for gait training and assisting functional mobility. However, comparisons between these two types of devices in terms of gait biomechanics and energetics have been limited. Through a randomized, crossover clinical trial, this study compared the use of a knee-powered lower limb exoskeleton (the ABLE Exoskeleton) against passive orthoses, which are the current standard of care for verticalization and gait ambulation outside the clinical setting in people with SCI. Ten patients with SCI completed a 10-session gait training program with each device followed by user satisfaction questionnaires. Walking with the ABLE Exoskeleton improved gait kinematics compared to the KAFOs, providing a more physiological gait pattern with less compensatory movements (38% reduction of circumduction, 25% increase of step length, 29% improvement in weight shifting). However, participants did not exhibit significantly better results in walking performance for the standard clinical tests (Timed Up and Go, 10-m Walk Test, and 6-min Walk Test), nor significant reductions in energy consumption. These results suggest that providing powered assistance only on the knee joints is not enough to significantly reduce the energy consumption required by people with SCI to walk compared to passive orthoses. Active assistance on the hip or ankle joints seems necessary to achieve this outcome.


Asunto(s)
Dispositivo Exoesqueleto , Ortesis del Pié , Traumatismos de la Médula Espinal , Humanos , Tobillo , Diseño de Equipo , Caminata/fisiología , Traumatismos de la Médula Espinal/terapia , Marcha/fisiología , Extremidad Inferior , Articulación de la Rodilla
6.
Clin Rehabil ; 35(11): 1577-1589, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34027703

RESUMEN

OBJECTIVE: Many patients with subacute stroke rely on the nonparetic arm and leg to propel manual wheelchairs. We designed a bimanual, lever-driven wheelchair (LARA) to promote overground mobility and hemiparetic arm exercise. This study measured the feasibility of using LARA to increase arm movement, achieve mobility, and improve arm motor recovery (clinicaltrials.gov/ct2/show/NCT02830893). DESIGN: Randomized, assessor-blind, controlled trial. SETTING: Two inpatient rehabilitation facilities. SUBJECTS: Nineteen patients with subacute stroke (1 week to 2 months post-stroke) received 30 minutes extra arm movement practice daily, while admitted to inpatient rehabilitation (n = 10) or before enrollment in outpatient therapy (n = 9). INTERVENTIONS: Patients were randomized to train with the LARA wheelchair (n = 11) or conventional exercises with a rehabilitation therapist (n = 8). MAIN MEASURES: Number of arm movements per training session; overground speed; Upper Extremity Fugl-Meyer score at three-month follow-up. RESULTS: Participants who trained with LARA completed 254 (median) arm movements with the paretic arm each session. For three participants, LARA enabled wheelchair mobility at practical indoor speeds (0.15-0.30 m/s). Fugl-Meyer score increased 19 ± 13 points for patients who trained with LARA compared to 14 ± 7 points with conventional exercises (P = 0.32). Secondary measures including shoulder pain and increased tone did not differ between groups. Mixed model analysis found significant interaction between LARA training and treatment duration (P = 0.037), informing power analysis for future investigation. CONCLUSIONS: Practising arm movement with a lever-driven wheelchair is a feasible method for increasing arm movement early after stroke. It enabled wheelchair mobility for a subset of patients and shows potential for improving arm motor recovery.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Silla de Ruedas , Brazo , Humanos , Recuperación de la Función , Método Simple Ciego , Accidente Cerebrovascular/complicaciones , Resultado del Tratamiento
7.
J Neuroeng Rehabil ; 18(1): 22, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526065

RESUMEN

Gait disorders can reduce the quality of life for people with neuromuscular impairments. Therefore, walking recovery is one of the main priorities for counteracting sedentary lifestyle, reducing secondary health conditions and restoring legged mobility. At present, wearable powered lower-limb exoskeletons are emerging as a revolutionary technology for robotic gait rehabilitation. This systematic review provides a comprehensive overview on wearable lower-limb exoskeletons for people with neuromuscular impairments, addressing the following three questions: (1) what is the current technological status of wearable lower-limb exoskeletons for gait rehabilitation?, (2) what is the methodology used in the clinical validations of wearable lower-limb exoskeletons?, and (3) what are the benefits and current evidence on clinical efficacy of wearable lower-limb exoskeletons? We analyzed 87 clinical studies focusing on both device technology (e.g., actuators, sensors, structure) and clinical aspects (e.g., training protocol, outcome measures, patient impairments), and make available the database with all the compiled information. The results of the literature survey reveal that wearable exoskeletons have potential for a number of applications including early rehabilitation, promoting physical exercise, and carrying out daily living activities both at home and the community. Likewise, wearable exoskeletons may improve mobility and independence in non-ambulatory people, and may reduce secondary health conditions related to sedentariness, with all the advantages that this entails. However, the use of this technology is still limited by heavy and bulky devices, which require supervision and the use of walking aids. In addition, evidence supporting their benefits is still limited to short-intervention trials with few participants and diversity among their clinical protocols. Wearable lower-limb exoskeletons for gait rehabilitation are still in their early stages of development and randomized control trials are needed to demonstrate their clinical efficacy.


Asunto(s)
Dispositivo Exoesqueleto , Trastornos Neurológicos de la Marcha/rehabilitación , Actividades Cotidianas , Terapia por Ejercicio/instrumentación , Marcha , Humanos , Extremidad Inferior , Calidad de Vida , Proyectos de Investigación , Robótica/instrumentación , Resultado del Tratamiento
8.
J Neuroeng Rehabil ; 17(1): 142, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33115472

RESUMEN

BACKGROUND: Powered wheelchairs are an essential technology to support mobility, yet their use is associated with a high level of sedentarism that can have negative health effects for their users. People with Duchenne muscular dystrophy (DMD) start using a powered wheelchair in their early teens due to the loss of strength in their legs and arms. There is evidence that low-intensity exercise can help preserve the functional abilities of people with DMD, but options for exercise when sitting in a powered wheelchair are limited. METHODS: In this paper, we present the design and the feasibility study of a new version of the MOVit device that allows powered-wheelchair users to exercise while driving the chair. Instead of using a joystick to drive the wheelchair, users move their arms through a cyclical motion using two powered, mobile arm supports that provide controller inputs to the chair. The feasibility study was carried out with a group of five individuals with DMD and five unimpaired individuals. Participants performed a series of driving tasks in a wheelchair simulator and on a real driving course with a standard joystick and with the MOVit 2.0 device. RESULTS: We found that driving speed and accuracy were significantly lowered for both groups when driving with MOVit compared to the joystick, but the decreases were small (speed was 0.26 m/s less and maximum path error was 0.1 m greater). Driving with MOVit produced a significant increase in heart rate (7.5 bpm) compared to the joystick condition. Individuals with DMD reported a high level of satisfaction with their performance and comfort in using MOVit. CONCLUSIONS: These results show for the first time that individuals with DMD can easily transition to driving a powered wheelchair using cyclical arm motions, achieving a reasonable driving performance with a short period of training. Driving in this way elicits cardiopulmonary exercise at an intensity found previously to produce health-related benefits in DMD.


Asunto(s)
Terapia por Ejercicio/métodos , Distrofia Muscular de Duchenne/rehabilitación , Silla de Ruedas , Adolescente , Adulto , Brazo/fisiopatología , Estudios de Factibilidad , Humanos , Pierna/fisiopatología , Masculino , Distrofia Muscular de Duchenne/fisiopatología
9.
IEEE Trans Neural Syst Rehabil Eng ; 27(9): 1770-1779, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31380764

RESUMEN

Powered wheelchair users can experience negative health effects from reduced physical activity. If a user could exercise by driving the chair, it might improve fitness. This paper presents the development of MOVit, an exercise-enabling, wheelchair driving interface. The design goal of MOVit was that users cyclically move their arms to drive the chair, thereby providing a light level of exercise while driving. MOVit supports this arm movement with custom mobile arm supports that also serve as the sensors that provide controller inputs. Here, we first quantified how increasing the frequency and amplitude of arm movement increase oxygen consumption and heart rate. Then, we evaluated two novel control methods for driving by moving the arm supports. Participants without impairment ( N = 24 ) were randomized to one of the two methods, or conventional joystick control, and performed driving tests over two days on a simulator and test course. Our results indicate that driving speed and accuracy were significantly lowered with the exercise-enabling methods compared to joystick control (ANOVA, ), but the decreases were small (speed was ~0.1 m/s less and course tracking error ~1 cm greater). These results show, for the first time, the feasibility of exercising while driving a powered wheelchair.


Asunto(s)
Interfaces Cerebro-Computador , Ejercicio Físico/fisiología , Silla de Ruedas , Adulto , Algoritmos , Brazo/fisiología , Femenino , Voluntarios Sanos , Frecuencia Cardíaca/fisiología , Humanos , Aprendizaje , Masculino , Movimiento/fisiología , Consumo de Oxígeno/fisiología , Desempeño Psicomotor/fisiología , Reproducibilidad de los Resultados , Adulto Joven
11.
IEEE Trans Neural Syst Rehabil Eng ; 26(10): 1965-1974, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30137011

RESUMEN

A feasibility study was performed to evaluate the control interfaces for a novel trunk support assistive device (Trunk Drive), namely, joystick, force on sternum, force on feet, and electromyography (EMG) to be used by adult men with Duchene muscular dystrophy. The objective of this paper was to evaluate the performance of the different control interfaces during a discrete position tracking task. We built a one degree of freedom flexion-extension active trunk support device that was tested on 10 healthy men. An experiment, based on the Fitts law, was conducted, whereby subjects were asked to steer a cursor representing the angle of the Trunk Drive into a target that was shown on a graphical user interface, using the above-mentioned control interfaces. The users could operate the Trunk Drive via each of the control interfaces. In general, the joystick and force on sternum were the fastest in movement time (more than 40%) without any significant difference between them, but there was a significant difference between force on sternum on the one hand, and EMG and force on feet on the other. All control interfaces proved to be feasible solutions for controlling an active trunk support, each of which had specific advantages.


Asunto(s)
Dispositivos de Autoayuda , Torso , Adulto , Fenómenos Biomecánicos , Electromiografía , Estudios de Factibilidad , Pie/fisiología , Mano/fisiología , Voluntarios Sanos , Humanos , Masculino , Movimiento/fisiología , Distrofia Muscular de Duchenne/rehabilitación , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Esternón/fisiología , Interfaz Usuario-Computador , Adulto Joven
12.
IEEE Int Conf Rehabil Robot ; 2017: 50-55, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28813792

RESUMEN

Many people with a stroke have a severely paretic arm, and it is often assumed that they are unable to learn novel, skilled behaviors that incorporate use of that arm. Here, we show that a group of people with chronic stroke (n = 5, upper extremity Fugl-Meyer scores: 31, 30, 26, 22, 8) learned to use their impaired arm to propel a novel, yoked-clutch lever drive wheelchair. Over six daily training sessions, each involving about 134 training movements with their "useless" arm, the users gradually achieved a 3-fold increase in wheelchair speed on average, with a 4-6 fold increase for three of the participants. They did this by learning a bimanual skill: pushing the levers with both arms while activating the yoked-clutches at the right time with their ipsilesional (i.e. "good") hand to propel the wheelchair forward. They perceived the task as highly motivating and useful. The speed improvements exceeded a 1.5-factor improvement observed when young, unimpaired users learned to propel the chair. The learning rate also exceeded a sample of learning rates from a variety of classic learning studies. These results suggest that appropriately-designed assistive technologies (or "unmasking technologies - UTs") can unleash a powerful, latent ability for motor learning even for severely paretic arms. While UTs may not reduce clinical impairment, they may facilitate large improvements in a specific functional ability.


Asunto(s)
Brazo/fisiopatología , Aprendizaje/fisiología , Destreza Motora/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Silla de Ruedas , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Recuperación de la Función , Dispositivos de Autoayuda , Rehabilitación de Accidente Cerebrovascular/instrumentación
13.
IEEE Int Conf Rehabil Robot ; 2017: 181-186, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28813815

RESUMEN

Robotic devices can train strength, coordination, or a combination of both. If a robotic device focuses on coordination, what happens to strength recovery, and vice versa? Understanding this interaction could help optimize robotic training. We developed a computational neurorehabilitation model to gain insight into the interaction between strength and coordination recovery after stroke. In the model, the motor system recovers by optimizing the activity of residual corticospinal cells (focally connected, excitatory and inhibitory) and reticulospinal cells (diffusely connected and excitatory) to achieve a motor task. To do this, the model employs a reinforcement learning algorithm that uses stochastic search based on a reward signal produced by task execution. We simulated two tasks that require strength and coordination: a finger movement task and a bilateral wheelchair propulsion task. We varied the reward signal to value strength versus coordination, determined by a weighting factor. The model predicted a nonlinear relationship between strength and coordination recovery consistent with clinical data obtained for each task. The model also predicted that stroke can cause a competition between strength and coordination recovery, due to a scarcity of focal and inhibitory cells. These results provide a rationale for implementing robotic movement therapy that can adaptively alter the combination of force and coordination training to target desired components of motor recovery.


Asunto(s)
Simulación por Computador , Destreza Motora/fisiología , Recuperación de la Función/fisiología , Robótica/instrumentación , Rehabilitación de Accidente Cerebrovascular/instrumentación , Rehabilitación de Accidente Cerebrovascular/métodos , Encéfalo/fisiología , Humanos , Fuerza Muscular/fisiología , Accidente Cerebrovascular
14.
J Neuroeng Rehabil ; 14(1): 86, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28851391

RESUMEN

BACKGROUND: Robotic arm supports aim at improving the quality of life for adults with Duchenne muscular dystrophy (DMD) by augmenting their residual functional abilities. A critical component of robotic arm supports is the control interface, as is it responsible for the human-machine interaction. Our previous studies showed the feasibility of using surface electromyography (sEMG) as a control interface to operate robotic arm supports in adults with DMD (22-24 years-old). However, in the biomedical engineering community there is an often raised skepticism on whether adults with DMD at the last stage of their disease have sEMG signals that can be measured and used for control. FINDINGS: In this study sEMG signals from Biceps and Triceps Brachii muscles were measured for the first time in a 37 year-old man with DMD (Brooke 6) that lost his arm function 15 years ago. The sEMG signals were measured during maximal and sub-maximal voluntary isometric contractions and evaluated in terms of signal-to-noise ratio and co-activation ratio. Beyond the profound deterioration of the muscles, we found that sEMG signals from both Biceps and Triceps muscles were measurable in this individual, although with a maximum signal amplitude 100 times lower compared to sEMG from healthy subjects. The participant was able to voluntarily modulate the required level of muscle activation during the sub-maximal voluntary isometric contractions. Despite the low sEMG amplitude and a considerable level of muscle co-activation, simulations of an elbow orthosis using the measured sEMG as driving signal indicated that the sEMG signals of the participant had the potential to provide control of elbow movements. CONCLUSIONS: To the best of our knowledge this is the first time that sEMG signals from a man with DMD at the last-stage of the disease were measured, analyzed and reported. These findings offer promising perspectives to the use of sEMG as an intuitive and natural control interface for robotic arm supports in adults with DMD until the last stage of the disease.


Asunto(s)
Electromiografía , Distrofia Muscular de Duchenne/fisiopatología , Codo/fisiología , Humanos , Contracción Isométrica , Masculino , Movimiento , Músculo Esquelético/fisiopatología , Aparatos Ortopédicos , Calidad de Vida , Robótica , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido , Adulto Joven
15.
J Neuroeng Rehabil ; 14(1): 73, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28701169

RESUMEN

BACKGROUND: Adults with Duchenne muscular dystrophy (DMD) can benefit from devices that actively support their arm function. A critical component of such devices is the control interface as it is responsible for the human-machine interaction. Our previous work indicated that surface electromyography (sEMG) and force-based control with active gravity and joint-stiffness compensation were feasible solutions for the support of elbow movements (one degree of freedom). In this paper, we extend the evaluation of sEMG- and force-based control interfaces to simultaneous and proportional control of planar arm movements (two degrees of freedom). METHODS: Three men with DMD (18-23 years-old) with different levels of arm function (i.e. Brooke scores of 4, 5 and 6) performed a series of line-tracing tasks over a tabletop surface using an experimental active arm support. The arm movements were controlled using three control methods: sEMG-based control, force-based control with stiffness compensation (FSC), and force-based control with no compensation (FNC). The movement performance was evaluated in terms of percentage of task completion, tracing error, smoothness and speed. RESULTS: For subject S1 (Brooke 4) FNC was the preferred method and performed better than FSC and sEMG. FNC was not usable for subject S2 (Brooke 5) and S3 (Brooke 6). Subject S2 presented significantly lower movement speed with sEMG than with FSC, yet he preferred sEMG since FSC was perceived to be too fatiguing. Subject S3 could not successfully use neither of the two force-based control methods, while with sEMG he could reach almost his entire workspace. CONCLUSIONS: Movement performance and subjective preference of the three control methods differed with the level of arm function of the participants. Our results indicate that all three control methods have to be considered in real applications, as they present complementary advantages and disadvantages. The fact that the two weaker subjects (S2 and S3) experienced the force-based control interfaces as fatiguing suggests that sEMG-based control interfaces could be a better solution for adults with DMD. Yet force-based control interfaces can be a better alternative for those cases in which voluntary forces are higher than the stiffness forces of the arms.


Asunto(s)
Brazo , Electromiografía/métodos , Movimiento , Distrofia Muscular de Duchenne/rehabilitación , Dispositivos de Autoayuda , Adolescente , Algoritmos , Estudios de Factibilidad , Femenino , Humanos , Masculino , Modelos Teóricos , Prioridad del Paciente , Diseño de Prótesis , Desempeño Psicomotor , Robótica , Procesamiento de Señales Asistido por Computador , Adulto Joven
17.
IEEE Trans Neural Syst Rehabil Eng ; 24(11): 1179-1190, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26890912

RESUMEN

While there is an extensive number of studies on the development and evaluation of electromyography (EMG)- and force-based control interfaces for assistive devices, no studies have focused on testing these control strategies for the specific case of adults with Duchenne muscular dystrophy (DMD). This paper presents a feasibility study on the use of EMG and force as control interfaces for the operation of active arm supports for men with DMD. We have built an experimental active elbow support, with a threefold objective: 1) to investigate whether adult men with DMD could use EMG- and force-based control interfaces; 2) to evaluate their performance during a discrete position-tracking task; and 3) to examine users' acceptance of the control methods. The system was tested in three adults with DMD (21-22 years). Although none of the three participants had performed any voluntary movements with their arms for the past 3-5 years, all of them were 100% successful in performing the series of tracking tasks using both control interfaces (mean task completion time EMG: [Formula: see text] , force: [Formula: see text] ). While movements with the force-based control were considerably smoother in Subject 3 and faster in Subject 1, EMG based-control was perceived as less fatiguing by all three subjects. Both EMG- and force-based interfaces are feasible solutions for the control of active elbow supports in adults with DMD and should be considered for further investigations on multi-DOF control.


Asunto(s)
Articulación del Codo/fisiopatología , Electromiografía/métodos , Dispositivo Exoesqueleto , Distrofia Muscular de Duchenne/fisiopatología , Distrofia Muscular de Duchenne/rehabilitación , Robótica/instrumentación , Biorretroalimentación Psicológica/instrumentación , Biorretroalimentación Psicológica/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Estudios de Factibilidad , Humanos , Masculino , Sistemas Hombre-Máquina , Distrofia Muscular de Duchenne/diagnóstico , Robótica/métodos , Estrés Mecánico , Resultado del Tratamiento , Adulto Joven
18.
J Neuroeng Rehabil ; 12: 111, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26637230

RESUMEN

Unfortunately, the original version of this article [1] contained an error. Equation 6 was included incorrectly: in the original equation variable slinks3 was missing.The correct Equation 6 can be found below:

19.
J Neuroeng Rehabil ; 12: 83, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26385658

RESUMEN

BACKGROUND: Persons suffering from progressive muscular weakness, like those with Duchenne muscular dystrophy (DMD), gradually lose the ability to stand, walk and to use their arms. This hinders them from performing daily activities, social participation and being independent. Wheelchairs are used to overcome the loss of walking. However, there are currently few efficient functional substitutes to support the arms. Arm supports or robotic arms can be mounted to wheelchairs to aid in arm motion, but they are quite visible (stigmatizing), and limited in their possibilities due to their fixation to the wheelchair. The users prefer inconspicuous arm supports that are comfortable to wear and easy to control. METHODS: In this paper the design, characterization, and pilot validation of a passive arm support prototype, which is worn on the body, is presented. The A-gear runs along the body from the contact surface between seat and upper legs via torso and upper arm to the forearm. Freedom of motion is accomplished by mechanical joints, which are nearly aligned with the human joints. The system compensates for the arm weight, using elastic bands for static balance, in every position of the arm. As opposed to existing devices, the proposed kinematic structure allows trunk motion and requires fewer links and less joint space without compromising balancing precision. The functional prototype has been validated in three DMD patients, using 3D motion analysis. RESULTS: Measurements have shown increased arm performance when the subjects were wearing the prototype. Upward and forward movements were easier to perform. The arm support is easy to put on and remove. Moreover, the device felt comfortable for the subjects. However, downward movements were more difficult, and the patients would prefer the device to be even more inconspicuous. CONCLUSION: The A-gear prototype is a step towards inconspicuousness and therefore well-received dynamic arm supports for people with muscular weakness.


Asunto(s)
Dispositivo Exoesqueleto , Distrofia Muscular de Duchenne/rehabilitación , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Movimiento , Proyectos Piloto , Extremidad Superior
20.
J Neuroeng Rehabil ; 11: 168, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25516421

RESUMEN

Active movement-assistive devices aim to increase the quality of life for patients with neuromusculoskeletal disorders. This technology requires interaction between the user and the device through a control interface that detects the user's movement intention. Researchers have explored a wide variety of invasive and non-invasive control interfaces. To summarize the wide spectrum of strategies, this paper presents a comprehensive review focused on non-invasive control interfaces used to operate active movement-assistive devices. A novel systematic classification method is proposed to categorize the control interfaces based on: (I) the source of the physiological signal, (II) the physiological phenomena responsible for generating the signal, and (III) the sensors used to measure the physiological signal. The proposed classification method can successfully categorize all the existing control interfaces providing a comprehensive overview of the state of the art. Each sensing modality is briefly described in the body of the paper following the same structure used in the classification method. Furthermore, we discuss several design considerations, challenges, and future directions of non-invasive control interfaces for active movement-assistive devices.


Asunto(s)
Intención , Dispositivos de Autoayuda , Programas Informáticos , Interfaz Usuario-Computador , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...