Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Behav Immun ; 108: 302-308, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36549578

RESUMEN

Persistent olfactory dysfunction (OD) is one of the most complaining and worrying complications of long COVID-19 because of the potential long-term neurological consequences. While causes of OD in the acute phases of the SARS-CoV-2 infection have been figured out, reasons for persistent OD are still unclear. Here we investigated the activity of two inflammatory pathways tightly linked with olfaction pathophysiology, namely Substance P (SP) and Prokineticin-2 (PK2), directly within the olfactory neurons (ONs) of patients to understand mechanisms of persistent post-COVID-19 OD. ONs were collected by non-invasive brushing from ten patients with persistent post-COVID-19 OD and ten healthy controls. Gene expression levels of SP, Neurokinin receptor 1, Interleukin-1ß (IL-1ß), PK2, PK2 receptors type 1 and 2, and Prokineticin-2-long peptide were measured in ONs by Real Time-PCR in both the groups, and correlated with residual olfaction. Immunofluorescence staining was also performed to quantify SP and PK2 proteins. OD patients, compared to controls, exhibited increased levels of both SP and PK2 in ONs, the latter proportional to residual olfaction. This work provided unprecedented, preliminary evidence that both SP and PK2 pathways may have a role in persistent post-COVID-19 OD. Namely, if the sustained activation of SP, lasting months after infection's resolution, might foster chronic inflammation and contribute to hyposmia, the PK2 expression could instead support the smell recovery.


Asunto(s)
COVID-19 , Trastornos del Olfato , Humanos , Neuronas , Síndrome Post Agudo de COVID-19 , SARS-CoV-2 , Olfato , Sustancia P
2.
Ann Neurol ; 93(1): 196-204, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36218142

RESUMEN

OBJECTIVE: The objective of this study was to outline the dynamics of prokineticin-2 pathway in relation to clinical-pathological features of Parkinson's disease by examining olfactory neurons of patients. METHODS: Thirty-eight patients (26 de novo, newly diagnosed) and 31 sex/age-matched healthy controls underwent noninvasive mucosa brushing for olfactory neurons collection, and standard clinical assessment. Gene expression levels of prokineticin-2, prokineticin-2 receptors type 1 and 2, and prokineticin-2-long peptide were measured in olfactory neurons by real-time polymerase chain reaction (PCR); moreover, the prokineticin-2 protein and α-synuclein species (total and oligomeric) were quantified by immunofluorescence staining. RESULTS: Prokineticin-2 expression was significantly increased in Parkinson's disease. De novo patients had higher prokineticin-2 levels, directly correlated with Movement Disorder Society-Sponsored Revision of the Unified Parkinson Disease Rating Scale (MDS-UPDRS) part III motor score. In addition, oligomeric α-synuclein was higher in Parkinson's disease and directly correlated with prokineticin-2 protein levels. Total α-synuclein did not differ between patients and controls. INTERPRETATION: Prokineticin-2 is a chemokine showing neuroprotective effects in experimental models of Parkinson's disease, but translational proof of its role in patients is still lacking. Here, we used olfactory neurons as the ideal tissue to analyze molecular stages of neurodegeneration in vivo, providing unprecedented evidence that the prokineticin-2 pathway is activated in patients with Parkinson's disease. Specifically, prokineticin-2 expression in olfactory neurons was higher at early disease stages, proportional to motor severity, and associated with oligomeric α-synuclein accumulation. These data, consistently with preclinical findings, support prokineticin-2 as a candidate target in Parkinson's disease, and validate reliability of olfactory neurons to reflect pathological changes of the disease. ANN NEUROL 2023;93:196-204.


Asunto(s)
Enfermedad de Parkinson , Humanos , alfa-Sinucleína/genética , Pruebas de Estado Mental y Demencia , Neuronas/metabolismo , Enfermedad de Parkinson/genética , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...