Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 43(4): 833-846, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38146911

RESUMEN

Arsenic can accumulate in freshwater biota, sometimes reaching potentially harmful levels. However, the toxicity of arsenic strongly depends on which arsenic species are present. Although organic species are considered less harmful than inorganic ones, they have not been extensively studied in freshwater environments, and drivers of variation in arsenic speciation among sites and taxa remain unclear. We assessed concentrations of two organic arsenic species, arsenobetaine (AsB) and dimethylarsinic acid (DMA), in fish and invertebrates from three lakes near Sudbury, Ontario, Canada-a region with widespread mining impacts. Both AsB and DMA were detected in most samples (n = 212), varying across a wide range of concentrations (<0.001-30.144 and <0.006-5.262 mg/kg dry wt, respectively). The lake with the most severe mining impacts typically had the highest concentrations (designated by square brackets []) of AsB and DMA. In contrast, the percentage of total arsenic made up by AsB (%AsB) and DMA (%DMA) did not vary significantly between lakes. Arsenic speciation in fish muscle varied with fish size, selenium concentrations, and trophic elevation (inferred from nitrogen stable isotope ratios δ15N), but relationships with dietary carbon source (inferred from carbon stable isotope ratios δ13C) were more varied. Within all three lake food webs, [AsB] and [DMA] typically underwent biodilution, decreasing with trophic elevation (i.e., δ15N). Although the aforementioned factors explained some variation in arsenic speciation, there remains considerable unexplained variation. Further studies on arsenic speciation in freshwater biota should target a wider diversity of taxa to better understand drivers of variation in arsenic speciation. In addition, research emphasizing the percentage of inorganic arsenic and other organic arsenic species is needed to improve environmental and human health risk assessments. Environ Toxicol Chem 2024;43:833-846. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Arsénico , Arsenicales , Animales , Humanos , Arsénico/análisis , Cadena Alimentaria , Ácido Cacodílico , Peces , Lagos , Ontario , Isótopos , Carbono
2.
Chemosphere ; 308(Pt 1): 136140, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36041531

RESUMEN

Elevated concentrations of total arsenic (As) have been reported in boreal freshwater fish in both human-impacted and relatively pristine areas. We assessed the arsenic speciation profiles in muscle tissue of six fish species (n = 300) sampled from nine locations across a remote freshwater watershed in northern Ontario, Canada, extending from inland headwater lakes to the coastal marine confluence. Of the five arsenic species measured, only arsenobetaine (AsB) and dimethylarsinic acid (DMA) were detected in these fish. Riverine fish had up to 10-fold higher total [As] when compared to lacustrine fish. On average, these riverine fish also had higher percentages of AsB (%AsB, 60 ± 26%) and lower percentages of unmeasured arsenic (%UNM, 20 ± 21%), compared to lacustrine fish (28 ± 18% and 52 ± 21% %AsB and %UNM, respectively). DMA percentages (%DMA) were relatively consistent across the watershed, averaging 20 ± 21% across all fish. We examined ecological drivers of As speciation and found that %AsB increased slightly with fish weight in large-body predatory fish, but not in forage fish or insectivores. Furthermore, %AsB was positively related to trophic elevation (inferred from δ15N) in lacustrine fish across 3 out of 4 communities and within some populations. Lastly, riverine fish with a more marine-based diet had markedly higher %AsB when compared to fish with more freshwater-based diets, indicating an effect of anadromy on arsenic speciation. Overall, knowledge on arsenic speciation in freshwater fish has been limited and these results indicate potential drivers that can be considered in future studies. Furthermore, the absence of toxic inorganic As species in these boreal fish is an important consideration for future environmental monitoring practices and risk assessments, some of which assume 10-20% of total [As] in fish is present as toxic inorganic As. Additional studies on As bioaccumulation and biotransformation are needed in freshwater systems, particularly at the base of aquatic food webs.


Asunto(s)
Intoxicación por Arsénico , Arsénico , Arsenicales , Animales , Arsénico/análisis , Arsenicales/metabolismo , Ácido Cacodílico/metabolismo , Peces/metabolismo , Humanos , Lagos , Músculos/química , Ontario
3.
J Environ Sci (China) ; 66: 338-347, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29628103

RESUMEN

Sediments from an arsenic (As) contaminated groundwater vent site were used to investigate As(III) binding, transformation and redistribution in native and iron oxide amended lake sediments using aging spiked batch reactions and a sequential extraction procedure that maintains As(V) and As(III) speciation. In the native sediments, fractionation analysis revealed that 10% of the spiked As(III) remained intact after a 32-day aging experiment and was predominantly adsorbed to the strongly sorbed (NH4H2PO4 extractable) and amorphous Fe oxide bound (H3PO4 extractable) fractions. Kinetic modelling of the experimental results allowed identifying the dominant reaction path for depletion of dissolved As(III) to As(III) absorbed on to the solid phase, followed by oxidation in the solid phase. Arsenite was initially adsorbed primarily to the easily exchangeable fraction ((NH4)2SO4 extractable), then rapidly transformed into As(V) and redistributed to the strongly sorbed and amorphous Fe oxide bound fractions. Oxidation of As(III) in recalcitrant fractions was less efficient. The iron oxide amendments illustrated the controls that iron oxides can have on As(III) binding and transformation rates. In goethite amended samples As(III) oxidation was faster and primarily occurred in the strongly sorbed and amorphous Fe oxide bound fractions. In these samples, 19.3µg Mn was redistributed (compared to the native sediment) from the easily exchangeable and crystalline Fe oxide bound fractions to the strongly sorbed and amorphous Fe oxide bound fractions, indicating that goethite may act as a catalyst for Mn(II) oxidation, thereby producing sorbed Mn(III/IV), which then appears to be involved in rapidly oxidizing As(III).


Asunto(s)
Arsénico/química , Monitoreo del Ambiente , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/química , Arsénico/análisis , Fraccionamiento Químico , Lagos/química , Contaminantes Químicos del Agua/análisis
4.
Environ Pollut ; 219: 1102-1108, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27640761

RESUMEN

A sequential extraction procedure (SEP) for the speciation analysis of As(III) and As(V) in oxic and suboxic soils and sediments was validated using a natural lake sediment and three certified reference materials, as well as spike recoveries of As(III) and As(V). Many of the extraction steps have been previously validated making the procedure useful for comparisons to similar previous SEP studies. The novel aspect of this research is the validation for the SEP to maintain As(III) and As(V) species. The proposed five step extraction procedure includes the extraction agents (NH4)2SO4, NH4H2PO4, H3PO4 + NH2OH·HCl, oxalate + ascorbic acid (heated), and HNO3 + HCl + HF, targeting operationally defined easily exchangeable, strongly sorbed, amorphous Fe oxide bound, crystalline Fe oxide bound, and residual As fractions, respectively. The third extraction step, H3PO4 + NH2OH·HCl, has not been previously validated for fraction selectivity. We present evidence for this extraction step to target As complexed with amorphous Fe oxides when used in the SEP proposed here. All solutions were analyzed on ICP-MS. The greatest concentrations of As were extracted from the amorphous Fe oxide fraction and the dominant species was As(V). Lake sediment materials were found to have higher As(III) concentrations than the soil materials. Because different soils/sediments have different chemical characteristics, maintenance of As species during extractions must be validated for specific soil/sediment types using spiking experiments.


Asunto(s)
Arsénico/análisis , Fraccionamiento Químico/métodos , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Contaminantes del Suelo/análisis , Suelo/química , Lagos/química , Óxidos/química
5.
Water Res ; 93: 289-295, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26928564

RESUMEN

Spatial surveys of Ramsey Lake, Sudbury, Ontario water quality were conducted using an innovative underwater towed vehicle (UTV) equipped with a multi-parameter probe providing real-time water quality data. The UTV revealed underwater vent sites through high resolution monitoring of different spatial chemical characteristics using common sensors (turbidity, chloride, dissolved oxygen, and oxidation/reduction sensors) that would not be feasible with traditional water sampling methods. Multi-parameter probe vent site identification is supported by elevated alkalinity and silica concentrations at these sites. The identified groundwater vent sites appear to be controlled by bedrock fractures that transport water from different sources with different contaminants of concern. Elevated contaminants, such as, arsenic and nickel and/or nutrient concentrations are evident at the vent sites, illustrating the potential of these sources to degrade water quality.


Asunto(s)
Ciudades , Agua Potable/análisis , Monitoreo del Ambiente/métodos , Agua Subterránea/análisis , Calidad del Agua/normas , Arsénico/análisis , Geografía , Lagos/química , Níquel/análisis , Ontario , Reproducibilidad de los Resultados , Estaciones del Año , Temperatura , Contaminantes Químicos del Agua/análisis
6.
Environ Toxicol Chem ; 27(5): 1020-30, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18419189

RESUMEN

Coupled metal speciation-fate models are an improvement over stand-alone fate-transport models for accurately assessing metal fate and transport. These coupled models estimate fate-controlling partition coefficients using geochemical speciation/complexation models. Commercially available geochemical models are practical options for a two-step, loose coupling with fate-transport models. These models differ in their partitioning estimates because of differences in assumptions, databases, and so on. The present study examines the effects of differences in estimates from geochemical models on estimates of cationic metal fate using two geochemical models: the Windermere humic aqueous model (WHAM) and the minicomputer equilibrium+ model (MINEQL+). The results from each geochemical model were used as input to the fate module of TRANSPEC (a general, coupled metal transport and speciation model). The two versions of the TRANSPEC model were then used to assess the fate of five cationic metals (Cd, Cu, Ni, Pb, and Zn) in Ross Lake (Flin Flon, MB, Canada; alkaline, eutrophic, mine impacted), Kelly Lake (Sudbury, ON, Canada; circumneutral, mesotrophic, mine influenced), and Lake Tantaré (Quebec City, QC, Canada; acidic, oligotrophic, pristine). For relatively soluble metals (Cd, Ni, and Zn), the WHAM and MINEQL+ estimates of speciation/complexation were similar for Ross and Kelly lakes but differed for Lake Tantaré. These differences, however, did not result in significant differences in overall fate estimates. Marked differences were observed between the WHAM and MINEQL+ estimates of partition coefficient, Kd, for more particle-reactive Cu and Pb that translated into the greatest impact on fate in mesotrophic Kelly Lake, in which particle movement is important for fate.


Asunto(s)
Metales/química , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...