Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Exp Hematol ; 132: 104176, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38320689

RESUMEN

The overall survival rate of patients with T-cell acute lymphoblastic leukemia (T-ALL) is now 90%, although patients with relapsed T-ALL face poor prognosis. The ubiquitin-proteasome system maintains normal protein homeostasis, and aberrations in this pathway are associated with T-ALL. Here we demonstrate the in vitro and in vivo activity of ixazomib, a second-generation orally available, reversible, and selective proteasome inhibitor against pediatric T-ALL cell lines and patient-derived xenografts (PDXs) grown orthotopically in immunodeficient NOD.Cg-PrkdcscidIL2rgtm1Wjl/SzJAusb (NSG) mice. Ixazomib was highly potent in vitro, with half-maximal inhibitory concentration (IC50) values in the low nanomolar range. As a monotherapy, ixazomib significantly extended mouse event-free survival of five out of eight T-ALL PDXs in vivo.


Asunto(s)
Compuestos de Boro , Glicina/análogos & derivados , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Niño , Animales , Ratones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Xenoinjertos , Inhibidores de Proteasoma/farmacología , Ratones Endogámicos NOD , Linfocitos T , Ratones SCID
2.
J Mol Med (Berl) ; 102(4): 507-519, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38349407

RESUMEN

Acute leukemia continues to be a major cause of death from disease worldwide and current chemotherapeutic agents are associated with significant morbidity in survivors. While better and safer treatments for acute leukemia are urgently needed, standard drug development pipelines are lengthy and drug repurposing therefore provides a promising approach. Our previous evaluation of FDA-approved drugs for their antileukemic activity identified disulfiram, used for the treatment of alcoholism, as a candidate hit compound. This study assessed the biological effects of disulfiram on leukemia cells and evaluated its potential as a treatment strategy. We found that disulfiram inhibits the viability of a diverse panel of acute lymphoblastic and myeloid leukemia cell lines (n = 16) and patient-derived xenograft cells from patients with poor outcome and treatment-resistant disease (n = 15). The drug induced oxidative stress and apoptosis in leukemia cells within hours of treatment and was able to potentiate the effects of daunorubicin, etoposide, topotecan, cytarabine, and mitoxantrone chemotherapy. Upon combining disulfiram with auranofin, a drug approved for the treatment of rheumatoid arthritis that was previously shown to exert antileukemic effects, strong and consistent synergy was observed across a diverse panel of acute leukemia cell lines, the mechanism of which was based on enhanced ROS induction. Acute leukemia cells were more sensitive to the cytotoxic activity of disulfiram than solid cancer cell lines and non-malignant cells. While disulfiram is currently under investigation in clinical trials for solid cancers, this study provides evidence for the potential of disulfiram for acute leukemia treatment. KEY MESSAGES: Disulfiram induces rapid apoptosis in leukemia cells by boosting oxidative stress. Disulfiram inhibits leukemia cell growth more potently than solid cancer cell growth. Disulfiram can enhance the antileukemic efficacy of chemotherapies. Disulfiram strongly synergises with auranofin in killing acute leukemia cells by ROS induction. We propose testing of disulfiram in clinical trial for patients with acute leukemia.


Asunto(s)
Disulfiram , Leucemia Mieloide Aguda , Humanos , Disulfiram/farmacología , Disulfiram/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Auranofina/farmacología , Auranofina/uso terapéutico , Línea Celular Tumoral , Leucemia Mieloide Aguda/metabolismo
3.
Haematologica ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38356460

RESUMEN

ETV6::ACSL6 represents a rare genetic aberration in hematopoietic neoplasms and is often associated with severe eosinophilia, which confers an unfavorable prognosis requiring additional anti-inflammatory treatment. However, since the translocation is unlikely to produce a fusion protein, the mechanism of ETV6::ACSL6 action remains unclear. Here, we performed multi-omics analyses of primary leukemia cells and patient-derived xenografts from an acute lymphoblastic leukemia (ALL) patient with ETV6::ACSL6 translocation. We identified a super-enhancer located within the ETV6 gene locus and revealed translocation and activation of the super-enhancer associated with the ETV6::ACSL6 fusion. The translocated super-enhancer exhibited intense interactions with genomic regions adjacent to and distal from the breakpoint at chromosomes 5 and 12, including genes coding inflammatory factors such as IL-3. This led to modulations in DNA methylation, histone modifications, and chromatin structures, triggering transcription of inflammatory factors leading to eosinophilia. Furthermore, the bromodomain and extraterminal domain (BET) inhibitor synergized with standard-of-care drugs for ALL, effectively reducing IL-3 expression and inhibiting ETV6::ACSL6 ALL growth in vitro and in vivo. Overall, our study revealed for the first time a cis-regulatory mechanism of super-enhancer translocation in ETV6::ACSL6 ALL, leading to ALL-accompanying clinical syndrome. These findings may stimulate novel treatment approaches for this challenging ALL subtype.

4.
Int J Biol Macromol ; 254(Pt 1): 127596, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37898250

RESUMEN

Philadelphia-like acute lymphoblastic leukemia (Ph-like ALL) is an aggressive B-ALL malignancy associated with high rates of relapse and inferior survival rate. While targeted treatments against the cell surface proteins CD22 or CD19 have been transformative in the treatment of refractory B-ALL, patients may relapse due to antigen loss, necessitating targeting alternative antigens. Cytokine receptor-like factor 2 (CRLF2) is overexpressed in half of Ph-like ALL cases conferring chemoresistance and enhancement of leukemia cell survival. Therefore, targeting CRLF2 may reduce the likelihood of relapse associated with antigen loss. We developed a CRLF2-targeting single-chain variable fragment modified by the fragment crystallizable region (CRLF2 scFv-Fc) conjugated to a drug maytansinoid 1 (DM1)-DOPC liposomal conjugate, creating homogeneous CRLF2-targeted liposomes (CRLF2-DM1 LIP). Cellular association and internalization studies in a Ph-like ALL cell line, MHH-CALL-4, compared to its lentivirally transduced CRLF2-knockdown counterpart (KD-CALL-4) revealed excellent CRLF2-targeting efficiency of CRLF2-DM1 LIP. Moreover, CRLF2-DM1 LIP showed selective association and internalization ex vivo using Ph-like ALL patient-derived xenograft (PDX) cells with minimal reactivity with non-target cells. Cell apoptosis assays demonstrated the CRLF2-dependent potency of CRLF2-DM1 LIP in Ph-like ALL cell lines. This study is the first to highlight the therapeutic potential of a CRLF2-directed scFv-Fc-liposomal conjugate for targeting Ph-like ALL.


Asunto(s)
Inmunoconjugados , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Humanos , Fragmentos de Inmunoglobulinas , Liposomas/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Modelos Animales de Enfermedad , Inmunoconjugados/farmacología , Recurrencia
5.
Blood Cancer J ; 13(1): 139, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679323

RESUMEN

The deregulation of BCL2 family proteins plays a crucial role in leukemia development. Therefore, pharmacological inhibition of this family of proteins is becoming a prevalent treatment method. However, due to the emergence of primary and acquired resistance, efficacy is compromised in clinical or preclinical settings. We developed a drug sensitivity prediction model utilizing a deep tabular learning algorithm for the assessment of venetoclax sensitivity in T-cell acute lymphoblastic leukemia (T-ALL) patient samples. Through analysis of predicted venetoclax-sensitive and resistant samples, PLK1 was identified as a cooperating partner for the BCL2-mediated antiapoptotic program. This finding was substantiated by additional data obtained through phosphoproteomics and high-throughput kinase screening. Concurrent treatment using venetoclax with PLK1-specific inhibitors and PLK1 knockdown demonstrated a greater therapeutic effect on T-ALL cell lines, patient-derived xenografts, and engrafted mice compared with using each treatment separately. Mechanistically, the attenuation of PLK1 enhanced BCL2 inhibitor sensitivity through upregulation of BCL2L13 and PMAIP1 expression. Collectively, these findings underscore the dependency of T-ALL on PLK1 and postulate a plausible regulatory mechanism.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animales , Humanos , Ratones , Algoritmos , Modelos Animales de Enfermedad , Proteínas Proto-Oncogénicas c-bcl-2/genética , Quinasa Tipo Polo 1
6.
Cancer Res ; 83(16): 2716-2732, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37523146

RESUMEN

For one-third of patients with pediatric cancer enrolled in precision medicine programs, molecular profiling does not result in a therapeutic recommendation. To identify potential strategies for treating these high-risk pediatric patients, we performed in vitro screening of 125 patient-derived samples against a library of 126 anticancer drugs. Tumor cell expansion did not influence drug responses, and 82% of the screens on expanded tumor cells were completed while the patients were still under clinical care. High-throughput drug screening (HTS) confirmed known associations between activating genomic alterations in NTRK, BRAF, and ALK and responses to matching targeted drugs. The in vitro results were further validated in patient-derived xenograft models in vivo and were consistent with clinical responses in treated patients. In addition, effective combinations could be predicted by correlating sensitivity profiles between drugs. Furthermore, molecular integration with HTS identified biomarkers of sensitivity to WEE1 and MEK inhibition. Incorporating HTS into precision medicine programs is a powerful tool to accelerate the improved identification of effective biomarker-driven therapeutic strategies for treating high-risk pediatric cancers. SIGNIFICANCE: Integrating HTS with molecular profiling is a powerful tool for expanding precision medicine to support drug treatment recommendations and broaden the therapeutic options available to high-risk pediatric cancers.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Niño , Evaluación Preclínica de Medicamentos , Detección Precoz del Cáncer , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ensayos Analíticos de Alto Rendimiento/métodos
7.
Wiley Interdiscip Rev RNA ; 14(6): e1796, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37267628

RESUMEN

Long noncoding RNAs (lncRNAs) are traditionally defined as RNA transcripts longer than 200 nucleotides that have no protein coding potential. LncRNAs have been identified to be dysregulated in various types of cancer, including the deadly hematopoietic cancer-acute myeloid leukemia (AML). Currently, survival rates for AML have reached a plateau necessitating new therapeutic targets and biomarkers to improve treatment options and survival from the disease. Therefore, the identification of lncRNAs as novel biomarkers and therapeutic targets for AML has major benefits. In this review, we assess the key studies which have recently identified lncRNAs as important molecules in AML and summarize the current knowledge of lncRNAs in AML. We delve into examples of the specific roles of lncRNA action in AML such as driving proliferation, differentiation block and therapy resistance as well as their function as tumor suppressors and utility as biomarkers. This article is categorized under: RNA in Disease and Development > RNA in Disease.


Asunto(s)
Leucemia Mieloide Aguda , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Biomarcadores , Biomarcadores de Tumor/genética
8.
Pediatr Blood Cancer ; : e30503, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37339930

RESUMEN

BACKGROUND: While children with acute lymphoblastic leukemia (ALL) experience close to a 90% likelihood of cure, the outcome for certain high-risk pediatric ALL subtypes remains dismal. Spleen tyrosine kinase (SYK) is a prominent cytosolic nonreceptor tyrosine kinase in pediatric B-lineage ALL (B-ALL). Activating mutations or overexpression of Fms-related receptor tyrosine kinase 3 (FLT3) are associated with poor outcome in hematological malignancies. TAK-659 (mivavotinib) is a dual SYK/FLT3 reversible inhibitor, which has been clinically evaluated in several other hematological malignancies. Here, we investigate the in vivo efficacy of TAK-659 against pediatric ALL patient-derived xenografts (PDXs). METHODS: SYK and FLT3 mRNA expression was quantified by RNA-seq. PDX engraftment and drug responses in NSG mice were evaluated by enumerating the proportion of human CD45+ cells (%huCD45+ ) in the peripheral blood. TAK-659 was administered per oral at 60 mg/kg daily for 21 days. Events were defined as %huCD45+ ≥ 25%. In addition, mice were humanely killed to assess leukemia infiltration in the spleen and bone marrow (BM). Drug efficacy was assessed by event-free survival and stringent objective response measures. RESULTS: FLT3 and SYK mRNA expression was significantly higher in B-lineage compared with T-lineage PDXs. TAK-659 was well tolerated and significantly prolonged the time to event in six out of eight PDXs tested. However, only one PDX achieved an objective response. The minimum mean %huCD45+ was significantly reduced in five out of eight PDXs in TAK-659-treated mice compared with vehicle controls. CONCLUSIONS: TAK-659 exhibited low to moderate single-agent in vivo activity against pediatric ALL PDXs representative of diverse subtypes.

9.
Sci Transl Med ; 15(696): eabm1262, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37196067

RESUMEN

High-risk childhood leukemia has a poor prognosis because of treatment failure and toxic side effects of therapy. Drug encapsulation into liposomal nanocarriers has shown clinical success at improving biodistribution and tolerability of chemotherapy. However, enhancements in drug efficacy have been limited because of a lack of selectivity of the liposomal formulations for the cancer cells. Here, we report on the generation of bispecific antibodies (BsAbs) with dual binding to a leukemic cell receptor, such as CD19, CD20, CD22, or CD38, and methoxy polyethylene glycol (PEG) for the targeted delivery of PEGylated liposomal drugs to leukemia cells. This liposome targeting system follows a "mix-and-match" principle where BsAbs were selected on the specific receptors expressed on leukemia cells. BsAbs improved the targeting and cytotoxic activity of a clinically approved and low-toxic PEGylated liposomal formulation of doxorubicin (Caelyx) toward leukemia cell lines and patient-derived samples that are immunophenotypically heterogeneous and representative of high-risk subtypes of childhood leukemia. BsAb-assisted improvements in leukemia cell targeting and cytotoxic potency of Caelyx correlated with receptor expression and were minimally detrimental in vitro and in vivo toward expansion and functionality of normal peripheral blood mononuclear cells and hematopoietic progenitors. Targeted delivery of Caelyx using BsAbs further enhanced leukemia suppression while reducing drug accumulation in the heart and kidneys and extended overall survival in patient-derived xenograft models of high-risk childhood leukemia. Our methodology using BsAbs therefore represents an attractive targeting platform to potentiate the therapeutic efficacy and safety of liposomal drugs for improved treatment of high-risk leukemia.


Asunto(s)
Anticuerpos Biespecíficos , Antineoplásicos , Leucemia , Humanos , Anticuerpos Biespecíficos/uso terapéutico , Distribución Tisular , Leucocitos Mononucleares , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Antineoplásicos/uso terapéutico , Polietilenglicoles , Liposomas , Leucemia/tratamiento farmacológico
10.
Pediatr Blood Cancer ; 70(8): e30398, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37140091

RESUMEN

BACKGROUND: Acute lymphoblastic leukemia (ALL) remains one of the most common causes of cancer-related mortality in children. Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases, and aberrations in the PI3K pathway are associated with several hematological malignancies, including ALL. Duvelisib (Copiktra) is an orally available, small molecule dual inhibitor of PI3Kδ and PI3Kγ, that is Food and Drug Administration (FDA) approved for the treatment of relapsed/refractory chronic lymphocytic leukemia and small lymphocytic lymphoma. Here, we report the efficacy of duvelisib against a panel of pediatric ALL patient-derived xenografts (PDXs). PROCEDURES: Thirty PDXs were selected for a single mouse trial based on PI3Kδ (PIK3CD) and PI3Kγ (PIK3CG) expression and mutational status. PDXs were grown orthotopically in NSG (NOD.Cg-Prkdcscid IL2rgtm1Wjl /SzJAusb) mice, and engraftment was evaluated by enumerating the proportion of human versus mouse CD45+ cells (%huCD45+ ) in the peripheral blood. Treatment commenced when the %huCD45+ reached greater than or equal to 1%, and events were predefined as %huCD45+ greater than or equal to 25% or leukemia-related morbidity. Duvelisib was administered per oral (50 mg/kg, twice daily for 28 days). Drug efficacy was assessed by event-free survival and stringent objective response measures. RESULTS: PI3Kδ and PI3Kγ mRNA expression was significantly higher in B-lineage than T-lineage ALL PDXs (p-values <.0001). Duvelisib was well-tolerated and reduced leukemia cells in the peripheral blood in four PDXs, but with only one objective response. There was no obvious relationship between duvelisib efficacy and PI3Kδ or PI3Kγ expression or mutation status, nor was the in vivo response to duvelisib subtype dependent. CONCLUSIONS: Duvelisib demonstrated limited in vivo activity against ALL PDXs.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Animales , Ratones , Xenoinjertos , Fosfatidilinositol 3-Quinasas , Ratones Endogámicos NOD , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Linfoma de Células B/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico
11.
Sci Signal ; 16(778): eabp9586, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36976863

RESUMEN

Mutations in the type III receptor tyrosine kinase FLT3 are frequent in patients with acute myeloid leukemia (AML) and are associated with a poor prognosis. AML is characterized by the overproduction of reactive oxygen species (ROS), which can induce cysteine oxidation in redox-sensitive signaling proteins. Here, we sought to characterize the specific pathways affected by ROS in AML by assessing oncogenic signaling in primary AML samples. The oxidation or phosphorylation of signaling proteins that mediate growth and proliferation was increased in samples from patient subtypes with FLT3 mutations. These samples also showed increases in the oxidation of proteins in the ROS-producing Rac/NADPH oxidase-2 (NOX2) complex. Inhibition of NOX2 increased the apoptosis of FLT3-mutant AML cells in response to FLT3 inhibitors. NOX2 inhibition also reduced the phosphorylation and cysteine oxidation of FLT3 in patient-derived xenograft mouse models, suggesting that decreased oxidative stress reduces the oncogenic signaling of FLT3. In mice grafted with FLT3 mutant AML cells, treatment with a NOX2 inhibitor reduced the number of circulating cancer cells, and combining FLT3 and NOX2 inhibitors increased survival to a greater extent than either treatment alone. Together, these data raise the possibility that combining NOX2 and FLT3 inhibitors could improve the treatment of FLT3 mutant AML.


Asunto(s)
Cisteína , Leucemia Mieloide Aguda , Humanos , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Cisteína/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Modelos Animales de Enfermedad , Línea Celular Tumoral , Tirosina Quinasa 3 Similar a fms/genética
12.
Blood ; 142(3): 274-289, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-36989489

RESUMEN

Interleukin-7 (IL-7) supports the growth and chemoresistance of T-cell acute lymphoblastic leukemia (T-ALL), particularly the early T-cell precursor subtype (ETP-ALL), which frequently has activating mutations of IL-7 signaling. Signal transducer and activator of transcription (STAT5) is an attractive therapeutic target because it is almost universally activated in ETP-ALL, even in the absence of mutations of upstream activators such as the IL-7 receptor (IL-7R), Janus kinase, and Fms-like tyrosine kinase 3 (FLT3). To examine the role of activated STAT5 in ETP-ALL, we have used a Lmo2-transgenic (Lmo2Tg) mouse model in which we can monitor chemoresistant preleukemia stem cells (pre-LSCs) and leukemia stem cells (LSCs) that drive T-ALL development and relapse following chemotherapy. Using IL-7R-deficient Lmo2Tg mice, we show that IL-7 signaling was not required for the formation of pre-LSCs but essential for their expansion and clonal evolution into LSCs to generate T-ALL. Activated STAT5B was sufficient for the development of T-ALL in IL-7R-deficient Lmo2Tg mice, indicating that inhibition of STAT5 is required to block the supportive signals provided by IL-7. To further understand the role of activated STAT5 in LSCs of ETP-ALL, we developed a new transgenic mouse that enables T-cell specific and doxycycline-inducible expression of the constitutively activated STAT5B1∗6 mutant. Expression of STAT5B1∗6 in T cells had no effect alone but promoted expansion and chemoresistance of LSCs in Lmo2Tg mice. Pharmacologic inhibition of STAT5 with pimozide-induced differentiation and loss of LSCs, while enhancing response to chemotherapy. Furthermore, pimozide significantly reduced leukemia burden in vivo and overcame chemoresistance of patient-derived ETP-ALL xenografts. Overall, our results demonstrate that STAT5 is an attractive therapeutic target for eradicating LSCs in ETP-ALL.


Asunto(s)
Células Precursoras de Linfocitos T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Ratones , Animales , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Interleucina-7/genética , Interleucina-7/metabolismo , Pimozida/uso terapéutico , Ratones Transgénicos
13.
Leukemia ; 37(1): 61-71, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36380143

RESUMEN

Infants with KMT2A-rearranged B-cell acute lymphoblastic leukemia (ALL) have a dismal prognosis. Survival outcomes have remained static in recent decades despite treatment intensification and novel therapies are urgently required. KMT2A-rearranged infant ALL cells are characterized by an abundance of promoter hypermethylation and exhibit high BCL-2 expression, highlighting potential for therapeutic targeting. Here, we show that hypomethylating agents exhibit in vitro additivity when combined with most conventional chemotherapeutic agents. However, in a subset of samples an antagonistic effect was seen between several agents. This was most evident when hypomethylating agents were combined with methotrexate, with upregulation of ATP-binding cassette transporters identified as a potential mechanism. Single agent treatment with azacitidine and decitabine significantly prolonged in vivo survival in KMT2A-rearranged infant ALL xenografts. Treatment of KMT2A-rearranged infant ALL cell lines with azacitidine and decitabine led to differential genome-wide DNA methylation, changes in gene expression and thermal proteome profiling revealed the target protein-binding landscape of these agents. The selective BCL-2 inhibitor, venetoclax, exhibited in vitro additivity in combination with hypomethylating or conventional chemotherapeutic agents. The addition of venetoclax to azacitidine resulted in a significant in vivo survival advantage indicating the therapeutic potential of this combination to improve outcome for infants with KMT2A-rearranged ALL.


Asunto(s)
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Lactante , Azacitidina/farmacología , Azacitidina/uso terapéutico , Decitabina/farmacología , Decitabina/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogénicas c-bcl-2 , Leucemia Mieloide Aguda/genética
14.
Front Mol Biosci ; 9: 885597, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35647029

RESUMEN

The measurement of circulating tumor DNA (ctDNA) has gained increasing prominence as a minimally invasive tool for the detection of cancer-specific markers in plasma. In adult cancers, ctDNA detection has shown value for disease-monitoring applications including tumor mutation profiling, risk stratification, relapse prediction, and treatment response evaluation. To date, there are ctDNA tests used as companion diagnostics for adult cancers and it is not understood why the same cannot be said about childhood cancer, despite the marked differences between adult and pediatric oncology. In this review, we discuss the current understanding of ctDNA as a disease monitoring biomarker in the context of pediatric malignancies, including the challenges associated with ctDNA detection in liquid biopsies. The data and conclusions from pediatric cancer studies of ctDNA are summarized, highlighting treatment response, disease monitoring and the detection of subclonal disease as applications of ctDNA. While the data from retrospective studies highlight the potential of ctDNA, large clinical trials are required for ctDNA analysis for routine clinical use in pediatric cancers. We outline the requirements for the standardization of ctDNA detection in pediatric cancers, including sample handling and reproducibility of results. With better understanding of the advantages and limitations of ctDNA and improved detection methods, ctDNA analysis may become the standard of care for patient monitoring in childhood cancers.

15.
Hemasphere ; 6(6): e734, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35651714

RESUMEN

Drug resistance and treatment failure in pediatric acute lymphoblastic leukemia (ALL) are in part driven by tumor heterogeneity and clonal evolution. Although bulk tumor genomic analyses have provided some insight into these processes, single-cell sequencing has emerged as a powerful technique to profile individual cells in unprecedented detail. Since the introduction of single-cell RNA sequencing, we now have the capability to capture not only transcriptomic, but also genomic, epigenetic, and proteomic variation between single cells separately and in combination. This rapidly evolving field has the potential to transform our understanding of the fundamental biology of pediatric ALL and guide the management of ALL patients to improve their clinical outcome. Here, we discuss the impact single-cell sequencing has had on our understanding of tumor heterogeneity and clonal evolution in ALL and provide examples of how single-cell technology can be integrated into the clinic to inform treatment decisions for children with high-risk disease.

16.
Front Oncol ; 12: 863329, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677155

RESUMEN

Rearrangements of the Mixed Lineage Leukemia (MLL/KMT2A) gene are present in approximately 10% of acute leukemias and characteristically define disease with poor outcome. Driven by the unmet need to develop better therapies for KMT2A-rearranged leukemia, we previously discovered that the novel anti-cancer agent, curaxin CBL0137, induces decondensation of chromatin in cancer cells, delays leukemia progression and potentiates standard of care chemotherapies in preclinical KMT2A-rearranged leukemia models. Based on the promising potential of histone deacetylase (HDAC) inhibitors as targeted anti-cancer agents for KMT2A-rearranged leukemia and the fact that HDAC inhibitors also decondense chromatin via an alternate mechanism, we investigated whether CBL0137 could potentiate the efficacy of the HDAC inhibitor panobinostat in KMT2A-rearranged leukemia models. The combination of CBL0137 and panobinostat rapidly killed KMT2A-rearranged leukemia cells by apoptosis and significantly delayed leukemia progression and extended survival in an aggressive model of MLL-AF9 (KMT2A:MLLT3) driven murine acute myeloid leukemia. The drug combination also exerted a strong anti-leukemia response in a rapidly progressing xenograft model derived from an infant with KMT2A-rearranged acute lymphoblastic leukemia, significantly extending survival compared to either monotherapy. The therapeutic enhancement between CBL0137 and panobinostat in KMT2A-r leukemia cells does not appear to be mediated through cooperative effects of the drugs on KMT2A rearrangement-associated histone modifications. Our data has identified the CBL0137/panobinostat combination as a potential novel targeted therapeutic approach to improve outcome for KMT2A-rearranged leukemia.

17.
Front Oncol ; 12: 807266, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223487

RESUMEN

Despite intensive chemotherapy regimens, up to 60% of adults with acute myeloid leukaemia (AML) will relapse and eventually succumb to their disease. Recent studies suggest that leukaemic stem cells (LSCs) drive AML relapse by residing in the bone marrow niche and adapting their metabolic profile. Metabolic adaptation and LSC plasticity are novel hallmarks of leukemogenesis that provide important biological processes required for tumour initiation, progression and therapeutic responses. These findings highlight the importance of targeting metabolic pathways in leukaemia biology which might serve as the Achilles' heel for the treatment of AML relapse. In this review, we highlight the metabolic differences between normal haematopoietic cells, bulk AML cells and LSCs. Specifically, we focus on four major metabolic pathways dysregulated in AML; (i) glycolysis; (ii) mitochondrial metabolism; (iii) amino acid metabolism; and (iv) lipid metabolism. We then outline established and emerging drug interventions that exploit metabolic dependencies of leukaemic cells in the treatment of AML. The metabolic signature of AML cells alters during different biological conditions such as chemotherapy and quiescence. Therefore, targeting the metabolic vulnerabilities of these cells might selectively eradicate them and improve the overall survival of patients with AML.

18.
Cancer Discov ; 12(1): 186-203, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34417224

RESUMEN

Mutations in epigenetic regulators are common in relapsed pediatric acute lymphoblastic leukemia (ALL). Here, we uncovered the mechanism underlying the relapse of ALL driven by an activating mutation of the NSD2 histone methyltransferase (p.E1099K). Using high-throughput drug screening, we found that NSD2-mutant cells were specifically resistant to glucocorticoids. Correction of this mutation restored glucocorticoid sensitivity. The transcriptional response to glucocorticoids was blocked in NSD2-mutant cells due to depressed glucocorticoid receptor (GR) levels and the failure of glucocorticoids to autoactivate GR expression. Although H3K27me3 was globally decreased by NSD2 p.E1099K, H3K27me3 accumulated at the NR3C1 (GR) promoter. Pretreatment of NSD2 p.E1099K cell lines and patient-derived xenograft samples with PRC2 inhibitors reversed glucocorticoid resistance in vitro and in vivo. PRC2 inhibitors restored NR3C1 autoactivation by glucocorticoids, increasing GR levels and allowing GR binding and activation of proapoptotic genes. These findings suggest a new therapeutic approach to relapsed ALL associated with NSD2 mutation. SIGNIFICANCE: NSD2 histone methyltransferase mutations observed in relapsed pediatric ALL drove glucocorticoid resistance by repression of the GR and abrogation of GR gene autoactivation due to accumulation of K3K27me3 at its promoter. Pretreatment with PRC2 inhibitors reversed resistance, suggesting a new therapeutic approach to these patients with ALL.This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Glucocorticoides/uso terapéutico , Histona Metiltransferasas/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Proteínas Represoras/genética , Línea Celular Tumoral/efectos de los fármacos , Supervivencia Celular , Niño , Resistencia a Antineoplásicos , Inhibidores Enzimáticos/farmacología , Femenino , Glucocorticoides/farmacología , Humanos , Masculino , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología
19.
EMBO Mol Med ; 14(4): e14608, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-34927798

RESUMEN

Biomarkers which better match anticancer drugs with cancer driver genes hold the promise of improved clinical responses and cure rates. We developed a precision medicine platform of rapid high-throughput drug screening (HTS) and patient-derived xenografting (PDX) of primary tumor tissue, and evaluated its potential for treatment identification among 56 consecutively enrolled high-risk pediatric cancer patients, compared with conventional molecular genomics and transcriptomics. Drug hits were seen in the majority of HTS and PDX screens, which identified therapeutic options for 10 patients for whom no targetable molecular lesions could be found. Screens also provided orthogonal proof of drug efficacy suggested by molecular analyses and negative results for some molecular findings. We identified treatment options across the whole testing platform for 70% of patients. Only molecular therapeutic recommendations were provided to treating oncologists and led to a change in therapy in 53% of patients, of whom 29% had clinical benefit. These data indicate that in vitro and in vivo drug screening of tumor cells could increase therapeutic options and improve clinical outcomes for high-risk pediatric cancer patients.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Niño , Modelos Animales de Enfermedad , Genómica/métodos , Humanos , Neoplasias/patología , Medicina de Precisión/métodos , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Pharmaceutics ; 13(10)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34683974

RESUMEN

Standard of care therapies for children with acute myeloid leukemia (AML) cause potent off-target toxicity to healthy cells, highlighting the need to develop new therapeutic approaches that are safe and specific for leukemia cells. Long non-coding RNAs (lncRNAs) are an emerging and highly attractive therapeutic target in the treatment of cancer due to their oncogenic functions and selective expression in cancer cells. However, lncRNAs have historically been considered 'undruggable' targets because they do not encode for a protein product. Here, we describe the development of a new siRNA-loaded lipid nanoparticle for the therapeutic silencing of the novel oncogenic lncRNA LINC01257. Transcriptomic analysis of children with AML identified LINC01257 as specifically expressed in t(8;21) AML and absent in healthy patients. Using NxGen microfluidic technology, we efficiently and reproducibly packaged anti-LINC01257 siRNA (LNP-si-LINC01257) into lipid nanoparticles based on the FDA-approved Patisiran (Onpattro®) formulation. LNP-si-LINC01257 size and ζ-potential were determined by dynamic light scattering using a Malvern Zetasizer Ultra. LNP-si-LINC01257 internalization and siRNA delivery were verified by fluorescence microscopy and flow cytometry analysis. lncRNA knockdown was determined by RT-qPCR and cell viability was characterized by flow cytometry-based apoptosis assay. LNP-siRNA production yielded a mean LNP size of ~65 nm with PDI ≤ 0.22 along with a >85% siRNA encapsulation rate. LNP-siRNAs were efficiently taken up by Kasumi-1 cells (>95% of cells) and LNP-si-LINC01257 treatment was able to successfully ablate LINC01257 expression which was accompanied by a significant 55% reduction in total cell count following 48 h of treatment. In contrast, healthy peripheral blood mononuclear cells (PBMCs), which do not express LINC01257, were unaffected by LNP-si-LINC01257 treatment despite comparable levels of LNP-siRNA uptake. This is the first report demonstrating the use of LNP-assisted RNA interference modalities for the silencing of cancer-driving lncRNAs as a therapeutically viable and non-toxic approach in the management of AML.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...