Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nat Microbiol ; 8(4): 581-595, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36747116

RESUMEN

Molecular hydrogen (H2) is an abundant and readily accessible energy source in marine systems, but it remains unknown whether marine microbial communities consume this gas. Here we use a suite of approaches to show that marine bacteria consume H2 to support growth. Genes for H2-uptake hydrogenases are prevalent in global ocean metagenomes, highly expressed in metatranscriptomes and found across eight bacterial phyla. Capacity for H2 oxidation increases with depth and decreases with oxygen concentration, suggesting that H2 is important in environments with low primary production. Biogeochemical measurements of tropical, temperate and subantarctic waters, and axenic cultures show that marine microbes consume H2 supplied at environmentally relevant concentrations, yielding enough cell-specific power to support growth in bacteria with low energy requirements. Conversely, our results indicate that oxidation of carbon monoxide (CO) primarily supports survival. Altogether, H2 is a notable energy source for marine bacteria and may influence oceanic ecology and biogeochemistry.


Asunto(s)
Bacterias , Agua de Mar , Bacterias/genética , Agua de Mar/microbiología , Hidrógeno , Oxidación-Reducción , Océanos y Mares
2.
ISME J ; 16(9): 2198-2212, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35739297

RESUMEN

Marine microbial communities rely on dissolved organic phosphorus (DOP) remineralisation to meet phosphorus (P) requirements. We extensively surveyed the genomic and metagenomic distribution of genes directing phosphonate biosynthesis, substrate-specific catabolism of 2-aminoethylphosphonate (2-AEP, the most abundant phosphonate in the marine environment), and broad-specificity catabolism of phosphonates by the C-P lyase (including methylphosphonate, a major source of methane). We developed comprehensive enzyme databases by curating publicly available sequences and then screened metagenomes from TARA Oceans and Munida Microbial Observatory Time Series (MOTS) to assess spatial and seasonal variation in phosphonate metabolism pathways. Phosphonate cycling genes were encoded in diverse gene clusters by 35 marine bacterial and archaeal classes. More than 65% of marine phosphonate cycling genes mapped to Proteobacteria with production demonstrating wider taxonomic diversity than catabolism. Hydrolysis of 2-AEP was the dominant phosphonate catabolism strategy, enabling microbes to assimilate carbon and nitrogen alongside P. Genes for broad-specificity catabolism by the C-P lyase were far less widespread, though enriched in the extremely P-deplete environment of the Mediterranean Sea. Phosphonate cycling genes were abundant in marine metagenomes, particularly from the mesopelagic zone and winter sampling dates. Disparity between prevalence of substrate-specific and broad-specificity catabolism may be due to higher resource expenditure from the cell to build and retain the C-P lyase. This study is the most comprehensive metagenomic survey of marine microbial phosphonate cycling to date and provides curated databases for 14 genes involved in phosphonate cycling.


Asunto(s)
Bacterias , Organofosfonatos , Archaea/genética , Archaea/metabolismo , Bacterias/genética , Bacterias/metabolismo , Mar Mediterráneo , Organofosfonatos/metabolismo , Estaciones del Año
3.
Environ Microbiol Rep ; 13(3): 401-406, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33870657

RESUMEN

Microbial rhodopsins are simple light-harvesting complexes that, unlike chlorophyll photosystems, have no iron requirements for their synthesis and phototrophic functions. Here, we report the environmental concentrations of rhodopsin along the Subtropical Frontal Zone off New Zealand, where Subtropical waters encounter the iron-limited Subantarctic High Nutrient Low Chlorophyll (HNLC) region. Rhodopsin concentrations were highest in HNLC waters where chlorophyll-a concentrations were lowest. Furthermore, while the ratio of rhodopsin to chlorophyll-a photosystems was on average 20 along the transect, this ratio increased to over 60 in HNLC waters. We further show that microbial rhodopsins are abundant in both picoplankton (0.2-3 µm) and in the larger (>3 µm) size fractions of the microbial community containing eukaryotic plankton and/or particle-attached prokaryotes. These findings suggest that rhodopsin phototrophy could be critical for microbial plankton to adapt to resource-limiting environments where photosynthesis and possibly cellular respiration are impaired.


Asunto(s)
Clorofila , Rodopsinas Microbianas , Nutrientes , Fotosíntesis , Plancton
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA