Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 147: 106786, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32135310

RESUMEN

While polyploidization is recognized as a major evolutionary driver for ferns and angiosperms, little is known about its impact in gymnosperms, where polyploidy is much less frequent. We explore Ephedra to evaluate (i) the extent of genome size diversity in the genus and the influence polyploidy has had on the evolution of nuclear DNA contents, and (ii) identify where shifts in genome size and polyploidy have occurred both temporally and spatially. A phylogenetic framework of all Ephedra species together with genome sizes and karyotypes for 87% and 67% of them respectively, were used to explore ploidy evolution and its global distribution patterns. Polyploidy was shown to be extremely common, with 41 species (83%) being polyploid (up to 8×) or having polyploid cytotypes - the highest frequency and level reported for any gymnosperm. Genome size was also diverse, with values ranging ~5-fold (8.09-38.34 pg/1C) - the largest range for any gymnosperm family - and increasing in proportion to ploidy level (i.e. no genome downsizing). Our findings provide novel data which support the view that gymnosperms have a more conserved mode of genomic evolution compared with angiosperms.


Asunto(s)
Evolución Biológica , Ephedra/genética , Genómica , Poliploidía , Evolución Molecular , Variación Genética , Tamaño del Genoma , Genoma de Planta , Filogenia , Factores de Tiempo , Tracheophyta/genética
2.
PeerJ ; 7: e6572, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30867993

RESUMEN

BACKGROUND: Deserts are biologically rich habitats with a vast array of animals and plants adapted to xeric conditions, and most deserts are among the planet's last remaining areas of total wilderness. Among North American deserts, the Chihuahuan Desert has the highest levels of diversity and endemism. To understand the effect of future climate change on plants distributed in this arid land and propose effective conservation planning, we focused on five endemic shrubby species that characterize the Chihuahuan Desert and used an integrative approach. METHODS: Ecological niche-based modeling, spatial genetics and ecological resistance analyses were carried out to identify the effect of global warming on the studied five shrubby species. Key areas that need to be preserved were identified taking into account the existing protected areas within the Chihuahuan Desert. RESULTS: The extent of future distribution will vary among these species, and on average expansion will occur in the western part of the Chihuahuan Desert. For most species low environmental resistance to gene flow was predicted, while higher future resistance was predicted for one species that would lead to increased population isolation. The highest haplotype diversity was identified in three hotspots. Based on future suitability of habitat and in the haplotype diversity we suggest preserving two hotspots of genetic diversity in the Sierra Madre Oriental, located in areas without protection. The third hotspot was detected in the well preserved Tehuacán-Cuicatlán Man and Biosphere Reserve. CONCLUSION: Global climate change will have an effect in arid adapted plants, favoring expansion in the western of the Chihuahuan Desert however negatively affecting others with high ecological resistance disrupting gene flow. Two hotspots of genetic diversity in the Sierra Madre Oriental should be protected.

3.
PeerJ ; 5: e3932, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29062605

RESUMEN

BACKGROUND: A number of biotic and abiotic factors have been proposed as drivers of geographic variation in species richness. As biotic elements, inter-specific interactions are the most widely recognized. Among abiotic factors, in particular for plants, climate and topographic variables as well as their historical variation have been correlated with species richness and endemism. In this study, we determine the extent to which the species richness and endemism of monocot geophyte species in Mesoamerica is predicted by current climate, historical climate stability and topography. METHODS: Using approximately 2,650 occurrence points representing 507 geophyte taxa, species richness (SR) and weighted endemism (WE) were estimated at a geographic scale using grids of 0.5 × 0.5 decimal degrees resolution using Mexico as the geographic extent. SR and WE were also estimated using species distributions inferred from ecological niche modeling for species with at least five spatially unique occurrence points. Current climate, current to Last Glacial Maximum temperature, precipitation stability and topographic features were used as predictor variables on multiple spatial regression analyses (i.e., spatial autoregressive models, SAR) using the estimates of SR and WE as response variables. The standardized coefficients of the predictor variables that were significant in the regression models were utilized to understand the observed patterns of species richness and endemism. RESULTS: Our estimates of SR and WE based on direct occurrence data and distribution modeling generally yielded similar results, though estimates based on ecological niche modeling indicated broader distribution areas for SR and WE than when species richness was directly estimated using georeferenced coordinates. The SR and WE of monocot geophytes were highest along the Trans-Mexican Volcanic Belt, in both cases with higher levels in the central area of this mountain chain. Richness and endemism were also elevated in the southern regions of the Sierra Madre Oriental and Occidental mountain ranges, and in the Tehuacán Valley. Some areas of the Sierra Madre del Sur and Sierra Madre Oriental had high levels of WE, though they are not the areas with the highest SR. The spatial regressions suggest that SR is mostly influenced by current climate, whereas endemism is mainly affected by topography and precipitation stability. CONCLUSIONS: Both methods (direct occurrence data and ecological niche modeling) used to estimate SR and WE in this study yielded similar results and detected a key area that should be considered in plant conservation strategies: the central region of the Trans-Mexican Volcanic Belt. Our results also corroborated that species richness is more closely correlated with current climate factors while endemism is related to differences in topography and to changes in precipitation levels compared to the LGM climatic conditions.

4.
Mol Phylogenet Evol ; 65(2): 437-50, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22776548

RESUMEN

A lineage of 12 arid land shrubby species in the gymnosperm genus Ephedra (Gnetales) from North America is used to evaluate the influence of climate on speciation. With a long evolutionary history, and a well documented fossil record this lineage is an ideal model for understanding the process of speciation under a niche conservatism scenario. Using seven DNA molecular markers, Bayesian inference is carried out to uncover sister species and to estimate time of divergence of the lineages. Ecological niche models are generated for four parapatric and sympatric sister species and two analyses of niche evolution are performed, one based on ecological niche models and another using raw data and multivariate analysis. As previous analyses suggest, the diversification of North America Ephedra species may be the result of a recent secondary radiation. Both parapatric and sympatric species diverged mostly in a scenario of climatic niche conservatism. However, we also found strong evidence for niche divergence for one of the sister species pairs (E. californica-E. trifurca). Moreover, the multivariate analysis found environmental differences for some variables between sister species. The estimated divergence time of three pairs of sister species distributed in southwestern North America (E. cutleri-E. aspera, E. californica-E. trifurca and E. torreyana-E. viridis) is inferred to have occurred in the Late Miocene to Pliocene and for the sister species pair E. antisyphilitica-E. coryi distributed in the southern United States and northeastern Mexico, it was inferred from the Pliocene to Pleistocene. The orogenetic and climatic changes documented for these regions related to expansion of arid lands, may have contributed to the diversification in North American Ephedra, rather than adaptations to new climatic conditions.


Asunto(s)
Clima , Ecosistema , Ephedra/clasificación , Especiación Genética , Teorema de Bayes , ADN Mitocondrial/genética , ADN de Plantas/genética , Ephedra/genética , Fósiles , Modelos Biológicos , América del Norte , Filogenia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...