Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 32(18): 5321-38, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15475387

RESUMEN

Germline mutations in the DNA mismatch repair (MMR) genes MSH2 and MLH1 are responsible for the majority of hereditary non-polyposis colorectal cancer (HNPCC), an autosomal-dominant early-onset cancer syndrome. Genetic testing of both MSH2 and MLH1 from individuals suspected of HNPCC has revealed a considerable number of missense codons, which are difficult to classify as either pathogenic mutations or silent polymorphisms. To identify novel MLH1 missense codons that impair MMR activity, a prospective genetic screen in the yeast Saccharomyces cerevisiae was developed. The screen utilized hybrid human-yeast MLH1 genes that encode proteins having regions of the yeast ATPase domain replaced by homologous regions from the human protein. These hybrid MLH1 proteins are functional in MMR in vivo in yeast. Mutagenized MLH1 fragments of the human coding region were synthesized by error-prone PCR and cloned directly in yeast by in vivo gap repair. The resulting yeast colonies, which constitute a library of hybrid MLH1 gene variants, were initially screened by semi-quantitative in vivo MMR assays. The hybrid MLH1 genes were recovered from yeast clones that exhibited a MMR defect and sequenced to identify alterations in the mutagenized region. This investigation identified 117 missense codons that conferred a 2-fold or greater decreased efficiency of MMR in subsequent quantitative MMR assays. Notably, 10 of the identified missense codons were equivalent to codon changes previously observed in the human population and implicated in HNPCC. To investigate the effect of all possible codon alterations at single residues, a comprehensive mutational analysis of human MLH1 codons 43 (lysine-43) and 44 (serine-44) was performed. Several amino acid replacements at each residue were silent, but the majority of substitutions at lysine-43 (14/19) and serine-44 (18/19) reduced the efficiency of MMR. The assembled data identifies amino acid substitutions that disrupt MLH1 structure and/or function, and should assist the interpretation of MLH1 genetic tests.


Asunto(s)
Reparación del ADN , Mutación Missense , Proteínas de Neoplasias/genética , Proteínas Adaptadoras Transductoras de Señales , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Fusión Artificial Génica , Disparidad de Par Base , Proteínas Portadoras , Codón/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Análisis Mutacional de ADN , Proteínas Fúngicas/genética , Pruebas Genéticas , Humanos , Datos de Secuencia Molecular , Homólogo 1 de la Proteína MutL , Mutagénesis , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Alineación de Secuencia
2.
J Steroid Biochem Mol Biol ; 86(1): 15-26, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12943741

RESUMEN

The yeast Saccharomyces cerevisiae was used to reconstruct a human estrogen receptor alpha (ERalpha)-mediated transcription activation system. The level of reporter gene activation was dependent on both the position of the estrogen response element (ERE) relative to the translation start site and the number of EREs in the hybrid promoter. A G400V amino acid alteration in the ERalpha polypeptide decreased sensitivity to 17beta-estradiol (E(2)), demonstrating the hormone responsiveness of ERalpha to be qualitatively and quantitatively similar in yeast and mammalian cells. Coexpression of SRC-1a, a potent stimulator of ERalpha function in mammalian cells, potentiated ERalpha-mediated gene expression over fivefold in a E(2)-dependent manner. Deletion of 56 amino acids at the C-terminal end of SRC-1a resulted in a protein with enhanced ability to potentiate ERalpha-mediated gene expression, which mimics the activity of the same truncation in human SRC-1a as well as the SRC-1e isoform that has the 56 C-terminal residues replaced with a different 14 amino acid peptide. The selective estrogen receptor modulator tamoxifen acted as a weak agonist of ERalpha-mediated gene expression and this weak activity was potentiated by SRC-1. Tamoxifen had no effect on E(2)-induced gene activation in either the presence or absence of SRC-1. In contrast to previously reported yeast-based ERalpha-transactivation systems, the system reported here in which SRC-1 functions as a bona fide coactivator should permit a more thorough dissection of the factors involved in ERalpha-mediated transcriptional activation.


Asunto(s)
Receptores de Estrógenos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tamoxifeno/análogos & derivados , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estradiol/farmacología , Antagonistas de Estrógenos/farmacología , Receptor alfa de Estrógeno , Galactosidasas/análisis , Galactosidasas/metabolismo , Expresión Génica/efectos de los fármacos , Expresión Génica/fisiología , Genes Reporteros/genética , Vectores Genéticos , Histona Acetiltransferasas , Humanos , Coactivador 1 de Receptor Nuclear , Regiones Promotoras Genéticas/genética , Isoformas de Proteínas , Receptores de Estrógenos/agonistas , Receptores de Estrógenos/antagonistas & inhibidores , Receptores de Estrógenos/genética , Elementos de Respuesta/genética , Saccharomyces cerevisiae/citología , Tamoxifeno/farmacología , Transactivadores/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA