Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Gastroenterol Hepatol ; 6(4): 405-427, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30182051

RESUMEN

Background & Aims: Multicopper ferroxidases (MCFs) facilitate intestinal iron absorption and systemic iron recycling, likely by a mechanism involving the oxidization of Fe2+ from the iron exporter ferroportin 1 for delivery to the circulating Fe3+ carrier transferrin. Hephaestin (HEPH), the only MCF known to be expressed in enterocytes, aids in the basolateral transfer of dietary iron to the blood. Mice lacking HEPH in the whole body (Heph-/- ) or intestine alone (Hephint/int ) exhibit defects in dietary iron absorption but still survive and grow. Circulating ceruloplasmin (CP) is the only other known MCF likely to interact with enterocytes. Our aim was to assess the effects of combined deletion of HEPH and CP on intestinal iron absorption and homeostasis in mice. Methods: Mice lacking both HEPH and CP (Heph-/-Cp-/- ) and mice with whole-body knockout of CP and intestine-specific deletion of HEPH (Hephint/intCp-/- ) were generated and phenotyped. Results: Heph-/-Cp-/- mice were severely anemic and had low serum iron, but they exhibited marked iron loading in duodenal enterocytes, the liver, heart, pancreas, and other tissues. Hephint/intCp-/- mice were moderately anemic (similar to Cp-/- mice) but were iron loaded only in the duodenum and liver, as in Hephint/int and Cp-/- mice, respectively. Both double knockout models absorbed iron in radiolabeled intestinal iron absorption studies, but the iron was inappropriately distributed, with an abnormally high percentage retained in the liver. Conclusions: These studies indicate that HEPH and CP, and likely MCFs in general, are not essential for intestinal iron absorption but are required for proper systemic iron distribution. They also point to important extra-intestinal roles for HEPH in maintaining whole-body iron homeostasis.


Asunto(s)
Ceruloplasmina/deficiencia , Hierro/metabolismo , Proteínas de la Membrana/deficiencia , Absorción Fisiológica , Anemia/patología , Animales , Animales Lactantes , Tamaño Corporal , Peso Corporal , Proteínas de Transporte de Catión/metabolismo , Ceruloplasmina/metabolismo , Modelos Animales de Enfermedad , Duodeno/metabolismo , Enterocitos/metabolismo , Femenino , Ligadura , Masculino , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos , Fenotipo
2.
PLoS One ; 8(11): e81253, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24260565

RESUMEN

Exposure to toxaphene, an environmentally persistent mixture of chlorinated terpenes previously utilized as an insecticide, has been associated with various cancers and diseases such as amyotrophic lateral sclerosis. Nevertheless, the cellular and molecular mechanisms responsible for these toxic effects have not been established. In this study, we used a functional approach in the model eukaryote Saccharomyces cerevisiae to demonstrate that toxaphene affects yeast mutants defective in (1) processes associated with transcription elongation and (2) nutrient utilization. Synergistic growth defects are observed upon exposure to both toxaphene and the known transcription elongation inhibitor mycophenolic acid (MPA). However, unlike MPA, toxaphene does not deplete nucleotides and additionally has no detectable effect on transcription elongation. Many of the yeast genes identified in this study have human homologs, warranting further investigations into the potentially conserved mechanisms of toxaphene toxicity.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Insecticidas/farmacología , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Toxafeno/farmacología , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Eliminación de Gen , Redes Reguladoras de Genes , Humanos , Redes y Vías Metabólicas , Anotación de Secuencia Molecular , Ácido Micofenólico/farmacología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Elongación de la Transcripción Genética/efectos de los fármacos
3.
Front Genet ; 4: 154, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23964287

RESUMEN

Dimethyl sulfoxide (DMSO) is frequently utilized as a solvent in toxicological and pharmaceutical investigations. It is therefore important to establish the cellular and molecular targets of DMSO in order to differentiate its intrinsic effects from those elicited by a compound of interest. We performed a genome-wide functional screen in Saccharomyces cerevisiae to identify deletion mutants exhibiting sensitivity to 1% DMSO, a concentration standard to yeast chemical profiling studies. We report that mutants defective in Golgi/ER transport are sensitive to DMSO, including those lacking components of the conserved oligomeric Golgi (COG) complex. Moreover, strains deleted for members of the SWR1 histone exchange complex are hypersensitive to DMSO, with additional chromatin remodeling mutants displaying a range of growth defects. We also identify DNA repair genes important for DMSO tolerance. Finally, we demonstrate that overexpression of histone H2A.Z, which replaces chromatin-associated histone H2A in a SWR1-catalyzed reaction, confers resistance to DMSO. Many yeast genes described in this study have homologs in more complex organisms, and the data provided is applicable to future investigations into the cellular and molecular mechanisms of DMSO toxicity.

4.
Toxicol Sci ; 132(2): 347-58, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23358190

RESUMEN

Exposure to organochlorinated pesticides such as dieldrin has been linked to Parkinson's and Alzheimer's diseases, endocrine disruption, and cancer, but the cellular and molecular mechanisms of toxicity behind these effects remain largely unknown. Here we demonstrate, using a functional genomics approach in the model eukaryote Saccharomyces cerevisiae, that dieldrin alters leucine availability. This model is supported by multiple lines of congruent evidence: (1) mutants defective in amino acid signaling or transport are sensitive to dieldrin, which is reversed by the addition of exogenous leucine; (2) dieldrin sensitivity of wild-type or mutant strains is dependent upon leucine concentration in the media; (3) overexpression of proteins that increase intracellular leucine confer resistance to dieldrin; (4) leucine uptake is inhibited in the presence of dieldrin; and (5) dieldrin induces the amino acid starvation response. Additionally, we demonstrate that appropriate negative regulation of the Ras/protein kinase A pathway, along with an intact pyruvate dehydrogenase complex, is required for dieldrin tolerance. Many yeast genes described in this study have human orthologs that may modulate dieldrin toxicity in humans.


Asunto(s)
Dieldrín/metabolismo , Hidrocarburos Clorados/metabolismo , Leucina/metabolismo , Plaguicidas/metabolismo , Saccharomyces cerevisiae/metabolismo
5.
PLoS Genet ; 8(6): e1002699, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22685415

RESUMEN

Zinc is an essential nutrient because it is a required cofactor for many enzymes and transcription factors. To discover genes and processes in yeast that are required for growth when zinc is limiting, we used genome-wide functional profiling. Mixed pools of ∼4,600 deletion mutants were inoculated into zinc-replete and zinc-limiting media. These cells were grown for several generations, and the prevalence of each mutant in the pool was then determined by microarray analysis. As a result, we identified more than 400 different genes required for optimal growth under zinc-limiting conditions. Among these were several targets of the Zap1 zinc-responsive transcription factor. Their importance is consistent with their up-regulation by Zap1 in low zinc. We also identified genes that implicate Zap1-independent processes as important. These include endoplasmic reticulum function, oxidative stress resistance, vesicular trafficking, peroxisome biogenesis, and chromatin modification. Our studies also indicated the critical role of macroautophagy in low zinc growth. Finally, as a result of our analysis, we discovered a previously unknown role for the ICE2 gene in maintaining ER zinc homeostasis. Thus, functional profiling has provided many new insights into genes and processes that are needed for cells to thrive under the stress of zinc deficiency.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Zinc/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Perfilación de la Expresión Génica , Genoma Fúngico , Homeostasis/genética , Peroxisomas/genética , Peroxisomas/metabolismo , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/clasificación , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
6.
Environ Sci Technol ; 43(11): 4188-93, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19569350

RESUMEN

Ecotoxicogenomic approaches are emerging as alternative methods in environmental monitoring because they allow insight into pollutant modes of action and help assess the causal agents and potential toxicity beyond the traditional end points of death, growth, and reproduction. Gene expression analysis has shown particular promise for identifying gene expression biomarkers of chemical exposure that can be further used to monitor specific chemical exposures in the environment. We focused on the development of gene expression markers to detect and discriminate between chemical exposures. Using a custom cDNA microarray for Daphnia magna, we identified distinct expression fingerprints in response to exposure at sublethal concentrations of Cu, Zn, Pb, and munitions constituents. Using the results obtained from microarray analysis, we chose a suite of potential biomarkers for each of the specific exposures. The selected potential biomarkers were tested in independent chemical exposures for specificity using quantitative reverse transcription polymerase chain reaction. Six genes were confirmed as differentially regulated bythe selected chemical exposures. Furthermore, each exposure was identified by response of a unique combination (suite) of individual gene expression biomarkers. These results demonstrate the potential for discovery and validation of novel biomarkers of chemical exposures using gene expression analysis, which could have broad applicability in environmental monitoring.


Asunto(s)
Biomarcadores , Daphnia/efectos de los fármacos , Daphnia/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Metales/toxicidad , Armas , Animales , Análisis de Secuencia por Matrices de Oligonucleótidos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad
7.
BMC Genomics ; 10: 130, 2009 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-19321002

RESUMEN

BACKGROUND: Iron-deficiency anemia is the most prevalent form of anemia world-wide. The yeast Saccharomyces cerevisiae has been used as a model of cellular iron deficiency, in part because many of its cellular pathways are conserved. To better understand how cells respond to changes in iron availability, we profiled the yeast genome with a parallel analysis of homozygous deletion mutants to identify essential components and cellular processes required for optimal growth under iron-limited conditions. To complement this analysis, we compared those genes identified as important for fitness to those that were differentially-expressed in the same conditions. The resulting analysis provides a global perspective on the cellular processes involved in iron metabolism. RESULTS: Using functional profiling, we identified several genes known to be involved in high affinity iron uptake, in addition to novel genes that may play a role in iron metabolism. Our results provide support for the primary involvement in iron homeostasis of vacuolar and endosomal compartments, as well as vesicular transport to and from these compartments. We also observed an unexpected importance of the peroxisome for growth in iron-limited media. Although these components were essential for growth in low-iron conditions, most of them were not differentially-expressed. Genes with altered expression in iron deficiency were mainly associated with iron uptake and transport mechanisms, with little overlap with those that were functionally required. To better understand this relationship, we used expression-profiling of selected mutants that exhibited slow growth in iron-deficient conditions, and as a result, obtained additional insight into the roles of CTI6, DAP1, MRS4 and YHR045W in iron metabolism. CONCLUSION: Comparison between functional and gene expression data in iron deficiency highlighted the complementary utility of these two approaches to identify important functional components. This should be taken into consideration when designing and analyzing data from these type of studies. We used this and other published data to develop a molecular interaction network of iron metabolism in yeast.


Asunto(s)
Genoma Fúngico , Hierro/metabolismo , Peroxisomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Análisis por Conglomerados , ADN de Hongos/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...