Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Intervalo de año de publicación
1.
Life (Basel) ; 13(4)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37109592

RESUMEN

The interactions between cell and cellular matrix confers plasticity to each body tissue, influencing the cellular migratory capacity. Macrophages rely on motility to promote their physiological function. These phagocytes are determinant for the control of invasive infections, and their immunological role largely depends on their ability to migrate and adhere to tissue. Therefore, they interact with the components of the extracellular matrix through their adhesion receptors, conferring morphological modifications that change their shape during migration. Nevertheless, the need to use in vitro cell growth models with the conditioning of three-dimensional synthetic matrices to mimic the dynamics of cell-matrix interaction has been increasingly studied. This becomes more important to effectively understand the changes occurring in phagocyte morphology in the context of infection progression, such as in Chagas disease. This disease is caused by the intracellular pathogen Trypanosoma cruzi, capable of infecting macrophages, determinant cells in the anti-trypanosomatid immunity. In the present study, we sought to understand how an in vitro extracellular matrix model interferes with T. cruzi infection in macrophages. Using different time intervals and parasite ratios, we evaluated the cell morphology and parasite replication rate in the presence of 3D collagen I matrix. Nevertheless, microscopy techniques such as scanning electron microscopy were crucial to trace macrophage-matrix interactions. In the present work, we demonstrated for the first time that the macrophage-matrix interaction favors T. cruzi in vitro replication and the release of anti-inflammatory cytokines during macrophage infection, in addition to drastically altering the morphology of the macrophages and promoting the formation of migratory macrophages.

2.
J Infect Dis ; 224(10): 1672-1683, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34427670

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) can progress to severe pneumonia with respiratory failure and is aggravated by the deregulation of the immune system causing an excessive inflammation including the cytokine storm. METHODS: In this study, we report that severe acutely infected patients have high levels of both type-1 and type-2 cytokines. RESULTS: Our results show abnormal cytokine levels upon T-cell stimulation, in a nonpolarized profile. Furthermore, our findings indicate that this hyperactive cytokine response is associated with a significantly increased frequency of late-differentiated T cells with particular phenotype of effector exhausted/senescent CD28-CD57+ cells. Of note, we demonstrated for the first time an increased frequency of CD3+CD4+CD28-CD57+ T cells with expression of programmed death 1, one of the hallmarks of T-cell exhaustion. CONCLUSIONS: These findings reveal that COVID-19 is associated with acute immunodeficiency, especially within the CD4+ T-cell compartment, and points to possible mechanisms of loss of clonal repertoire and susceptibility to viral relapse and reinfection events.


Asunto(s)
COVID-19 , Antígenos CD28 , Enfermedad Crítica , Citocinas/metabolismo , Humanos , SARS-CoV-2
4.
Sci Rep ; 10(1): 19630, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33184506

RESUMEN

The novel coronavirus SARS-CoV-2 causes COVID-19, a highly pathogenic viral infection threatening millions. The majority of the individuals infected are asymptomatic or mildly symptomatic showing typical clinical signs of common cold. However, approximately 20% of the patients can progress to acute respiratory distress syndrome (ARDS), evolving to death in about 5% of cases. Recently, angiotensin-converting enzyme 2 (ACE2) has been shown to be a functional receptor for virus entry into host target cells. The upregulation of ACE2 in patients with comorbidities may represent a propensity for increased viral load and spreading of infection to extrapulmonary tissues. This systemic infection is associated with higher neutrophil to lymphocyte ratio in infected tissues and high levels of pro-inflammatory cytokines leading to an extensive microthrombus formation with multiorgan failure. Herein we investigated whether SARS-CoV-2 can stimulate extracellular neutrophils traps (NETs) in a process called NETosis. We demonstrated for the first time that SARS-CoV-2 in fact is able to activate NETosis in human neutrophils. Our findings indicated that this process is associated with increased levels of intracellular Reactive Oxygen Species (ROS) in neutrophils. The ROS-NET pathway plays a role in thrombosis formation and our study suggest the importance of this target for therapy approaches against disease.


Asunto(s)
Infecciones por Coronavirus/inmunología , Trampas Extracelulares/metabolismo , Neutrófilos/citología , Neumonía Viral/inmunología , Adolescente , Anciano , COVID-19 , Infecciones por Coronavirus/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neutrófilos/inmunología , Pandemias , Fagocitosis , Neumonía Viral/patología , Especies Reactivas de Oxígeno/metabolismo
5.
Front Microbiol ; 10: 1598, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31338088

RESUMEN

B-1 cells can directly and indirectly influence the immune response. These cells are known to be excellent producers of natural antibodies and can secrete a variety of immunomodulatory molecules. They are also able to differentiate into B-1 cell-derived phagocytes (B-1CDP). B-1 cells can modulate macrophages to become less effective, and B-1CDP cells are more susceptible in infection models. In this work, we investigated the microbicidal ability of these cells in Trypanosoma cruzi infection in vitro. The results show that macrophages from BALB/c mice are more susceptible to infection than macrophages from XID mice. The resistance observed in macrophages from XID mice was abolished in the presence of B-1 cells, and this event seems to be associated with IL-10 production by B-1 cells, which may have contributed to the decrease of NO production. Additionally, B-1CDP cells were more permissive to intracellular T. cruzi infection than peritoneal macrophages. These findings strongly suggest that B-1 cells and B-1CDP cells have a potential role in the persistence of the parasite in host cells.

6.
Front Immunol ; 8: 604, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28620374

RESUMEN

Trypanosoma cruzi is an obligatory intracellular protozoan parasite, and it is the etiological agent of Chagas' disease that is endemic in the Americas. In addition to humans, a wide spectrum of mammals can be infected by T. cruzi, including dogs. Dogs develop acute and chronic disease, similar to human infection. T. cruzi can infect almost all cell types and after cell invasion, the metacyclics trypomastigotes localize in the cytoplasm, where they transform into amastigotes, the replicative form of T. cruzi in mammals. After amastigote multiplication and differentiation, parasites lyse host cells and spread through the body by blood circulation. In this work, we evaluated the in vitro ability of T. cruzi to infect a canine macrophage cell line DH82 compared with RAW264.7, a murine tissue culture macrophage. Our results have shown that the T. cruzi is able to infect, replicate and differentiate in DH82 cell line. We observed that following treatment with LPS and IFN-γ DH82 cells were more resistant to infection and that resistance was not related reactive oxygen species production in our system. In this study, we also found that DH82 cells became more susceptible to T. cruzi infection when cocultured with apoptotic cells. The analysis of cytokine production has showed elevated levels of the TGF-ß, IL-10, and TNF-α produced by T. cruzi-infected canine macrophages. Additionally, we demonstrated a reduced expression of the MHC class II and CD80 by infected DH82 cell line.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...