Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 149: 109572, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636739

RESUMEN

Streptococcosis outbreaks caused by Streptococcus agalactiae infection in tilapia aquaculture have been consistently reported and associated with high mortality and morbidity leading to significant economic losses. Existing vaccine candidates against Streptococcus spp. are designed for intraperitoneal injections that are not practical and labor-intensive which have prompted farmers to protect aquatic animals with antibiotics, thus encouraging the emergence of multidrug resistant bacteria. In this study, a live recombinant L. lactis vaccine expressing a 1403 bp surface immunogenic protein (SIP) and a 1100 bp truncated SIP (tSIP) gene was developed and evaluated against S. agalactiae infection in tilapia. Both SIP and tSIP sequences were cloned and transformed into L. lactis. The recombinant L.lactis vaccine was orally administered to juvenile tilapia for a month. Detection of SIP-specific serum IgM in vaccinated groups compared to control groups indicated that recombinant proteins expressed from L. lactis could elicit immunogenic reactions in tilapia. Fish immunized with the tSIP vaccine also showed the highest level of protection compared to other test groups, and the mortality rate was significantly reduced compared to both control groups. The relative percentage of survival (RPS) against S. agalactiae for both SIP and tSIP-vaccinated groups was 50 % and 89 %, respectively, at 14 days post-challenge. Significant up-regulation of IgM, IL-1ß, IL-10, TNF-α and IFN-γ were observed at day 34 between the vaccinated and control groups. These results indicated that the recombinant lactococcal tSIP vaccine can elicit both cell-mediated and humoral responses and is recommended as a potential oral vaccine against S. agalactiae infection. Future work will include further in vivo challenge assessments of this vaccine candidate fused with adjuvants to boost immunogenicity levels in tilapia.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Infecciones Estreptocócicas , Streptococcus agalactiae , Animales , Streptococcus agalactiae/inmunología , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/prevención & control , Infecciones Estreptocócicas/inmunología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Cíclidos/inmunología , Administración Oral , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Estreptocócicas/inmunología , Vacunas Estreptocócicas/administración & dosificación , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Lactococcus lactis/genética , Lactococcus lactis/inmunología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética
2.
Vet Res Commun ; 47(4): 1973-1990, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37349590

RESUMEN

Rachycentron canadum (cobia) is a marine fish species of high economic value in aquaculture due to its fast growth rate and good feed conversion efficacy. Regrettably, the industry has been affected by significant setbacks from high mortality due to diseases. Consequently, an improved perception of innate immunity correlated to each mucosal-associated lymphoid tissue (MALT) in teleost fish is necessary to understand hosts' response towards infections better. The utilization of polysaccharides in seaweed to stimulate the immune system has gathered unprecedented attention. The present study examined the immunostimulatory effects of Sarcodia suae water extracts (SSWE) on in vivo gill-, gut- and skin-associated lymphoid tissues (GIALT, GALT, and SALT) via immersion and oral ingestions. The GIALT genes (TNF-α, Cox2, IL-1ß, IL-6, IL-8, IL-17 A/F1-3, IL-11, IL-12, IL-15, IL-18, MHCIa, IgM, and IgT) except IL-10 recorded positive upregulations in a dose-dependent manner post 24 h immersion in SSWE, indicating the algae extract contained bioactive compounds that could stimulate the immune genes. The upregulation of IL-12, IL-15, and IL-18 in the gills and hindgut post-SSWE immersion indicated that the extract could promote Th1-related responses in the MALTs. The modulation of immune gene expressions in the feeding trial was less potent than in the SSWE immersion. These findings indicated that the SSWE stimulated robust immune responses in both the GIALT and GALT of cobia. This suggests that the SSWE could be further explored as an effective immersive stimulant for fish, enhancing their immune system against pathogens.


Asunto(s)
Enfermedades de los Peces , Perciformes , Animales , Interleucina-18 , Interleucina-15 , Perciformes/genética , Peces/genética , Tejido Linfoide , Interleucina-12 , Enfermedades de los Peces/genética
3.
Physiol Mol Biol Plants ; 29(3): 377-392, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37033764

RESUMEN

Utilisation of calcium lignosulfonate (CaLS) in Vanilla planifolia has been reported to improve shoot multiplication. However, mechanisms responsible for such observation remain unknown. Here, we elucidated the underlying mechanisms of CaLS in promoting shoot multiplication of V. planifolia via comparative proteomics, biochemical assays, and nutrient analysis. The proteome profile of CaLS-treated plants showed enhancement of several important cellular metabolisms such as photosynthesis, protein synthesis, Krebs cycle, glycolysis, gluconeogenesis, and carbohydrate synthesis. Further biochemical analysis recorded that CaLS increased Rubisco activity, hexokinase activity, isocitrate dehydrogenase activity, total carbohydrate content, glutamate synthase activity and total protein content in plant shoot, suggesting the role of CaLS in enhancing shoot growth via upregulation of cellular metabolism. Subsequent nutrient analysis showed that CaLS treatment elevated the contents of several nutrient ions especially calcium and sodium ions. In addition, our study also revealed that CaLS successfully maintained the cellular homeostasis level through the regulation of signalling molecules such as reactive oxygen species and calcium ions. These results demonstrated that the CaLS treatment can enhance shoot multiplication in V. planifolia Andrews by stimulating nutrient uptake, inducing cell metabolism, and regulating cell homeostasis. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01293-w.

4.
Toxins (Basel) ; 15(4)2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-37104184

RESUMEN

Aflatoxins (AFs) represent one of the main mycotoxins produced by Aspergillus flavus and Aspergillus parasiticus, with the most prevalent and lethal subtypes being AFB1, AFB2, AFG1, and AFG2. AFs are responsible for causing significant public health issues and economic concerns that affect consumers and farmers globally. Chronic exposure to AFs has been linked to liver cancer, oxidative stress, and fetal growth abnormalities among other health-related risks. Although there are various technologies, such as physical, chemical, and biological controls that have been employed to alleviate the toxic effects of AF, there is still no clearly elucidated universal method available to reduce AF levels in food and feed; the only mitigation is early detection of the toxin in the management of AF contamination. Numerous detection methods, including cultures, molecular techniques, immunochemical, electrochemical immunosensor, chromatographic, and spectroscopic means, are used to determine AF contamination in agricultural products. Recent research has shown that incorporating crops with higher resistance, such as sorghum, into animal feed can reduce the risk of AF contamination in milk and cheese. This review provides a current overview of the health-related risks of chronic dietary AF exposure, recent detection techniques, and management strategies to guide future researchers in developing better detection and management strategies for this toxin.


Asunto(s)
Aflatoxinas , Técnicas Biosensibles , Animales , Aflatoxinas/toxicidad , Aflatoxinas/análisis , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Inmunoensayo , Aspergillus flavus/química
5.
Biology (Basel) ; 12(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36979122

RESUMEN

Vacuolar processing enzyme (VPE) is a cysteine protease responsible for vacuolar proteins' maturation and regulation of programmed cell death (PCD). Four isoforms of Arabidopsis thaliana VPEs were identified previously, but only the functions of ßVPE, γVPE, and δVPE were determined. The specific function of a gene is linked to the cis-acting elements in the promoter region. A promoter analysis found repetitive drought-related cis-elements in αVPE, which highlight its potential involvement in drought regulation in A. thaliana. The further co-expression network portraying genes interacting with αVPE substantiated its drought-regulation-related function. Expression of αVPE was upregulated after drought treatment in A. thaliana. To confirm the role of αVPE, a loss of function study revealed that αVPE knockout mutants remained green compared with WT after drought treatment. The mutants had reduced proline activity, decreased sucrose content, and lower MDA content, but increased photosynthetic pigments, indicating that αVPE negatively regulates drought tolerance in A. thaliana. Taken together, our findings serve as important evidence of the involvement of αVPE in modulating drought tolerance in A. thaliana.

6.
Sci Rep ; 12(1): 19639, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385165

RESUMEN

Banana (Musa acuminata) is an important fruit crop and source of income for various countries, including Malaysia. To date, current agrochemical practice has become a disputable issue due to its detrimental effect on the environment. λ-carrageenan, a natural polysaccharide extracted from edible red seaweed, has been claimed to be a potential plant growth stimulator. Hence, the present study investigates the effects of λ-carrageenan on plant growth using Musa acuminata cv. Berangan (AAA). Vegetative growth such as plant height, root length, pseudostem diameter, and fresh weight was improved significantly in λ-carrageenan-treated banana plants at an optimum concentration of 750 ppm. Enhancement of root structure was also observed in optimum λ-carrageenan treatment, facilitating nutrients uptake in banana plants. Further biochemical assays and gene expression analysis revealed that the increment in growth performance was consistent with the increase of chlorophyll content, protein content, and phenolic content, suggesting that λ-carrageenan increases photosynthesis rate, protein biosynthesis, and secondary metabolites biosynthesis which eventually stimulate growth. Besides, λ-carrageenan at optimum concentration also increased catalase and peroxidase activities, which led to a significant reduction in hydrogen peroxide and malondialdehyde, maintaining cellular homeostasis in banana plants. Altogether, λ-carrageenan at optimum concentration improves the growth of banana plants via inducing metabolic processes, enhancing nutrient uptake, and regulation of cell homeostasis. Further investigations are needed to evaluate the effectiveness of λ-carrageenan on banana plants under field conditions.


Asunto(s)
Musa , Musa/genética , Carragenina/farmacología , Carragenina/metabolismo , Desarrollo de la Planta , Nutrientes , Homeostasis
7.
Biology (Basel) ; 11(11)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36358305

RESUMEN

The Harvey rat sarcoma (HRAS) proto-oncogene belongs to the RAS family and is one of the pathogenic genes that cause cancer. Deleterious nsSNPs might have adverse consequences at the protein level. This study aimed to investigate deleterious nsSNPs in the HRAS gene in predicting structural alterations associated with mutants that disrupt normal protein-protein interactions. Functional and structural analysis was employed in analyzing the HRAS nsSNPs. Putative post-translational modification sites and the changes in protein-protein interactions, which included a variety of signal cascades, were also investigated. Five different bioinformatics tools predicted 33 nsSNPs as "pathogenic" or "harmful". Stability analysis predicted rs1554885139, rs770492627, rs1589792804, rs730880460, rs104894227, rs104894227, and rs121917759 as unstable. Protein-protein interaction analysis revealed that HRAS has a hub connecting three clusters consisting of 11 proteins, and changes in HRAS might cause signal cascades to dissociate. Furthermore, Kaplan-Meier bioinformatics analyses indicated that the HRAS gene deregulation affected the overall survival rate of patients with breast cancer, leading to prognostic significance. Thus, based on these analyses, our study suggests that the reported nsSNPs of HRAS may serve as potential targets for different proteomic studies, diagnoses, and therapeutic interventions focusing on cancer.

8.
Materials (Basel) ; 15(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36079184

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of pneumonia in humans, and it is associated with high morbidity and mortality rates, especially in immunocompromised patients. Its high rate of multidrug resistance led to an exploration of novel antimicrobials. Metal nanoparticles have shown potent antibacterial activity, thus instigating their application in MRSA. This review summarizes current insights of Metal-Containing NPs in treating MRSA. This review also provides an in-depth appraisal of opportunities and challenges in utilizing metal-NPs to treat MRSA.

9.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012267

RESUMEN

Ischemic heart disease (IHD) constitutes the leading global cause of mortality and morbidity. Although significant progress has been achieved in the diagnosis, treatment, and prognosis of IHD, more robust diagnostic biomarkers and therapeutic interventions are still needed to circumvent the increasing incidence of IHD. MicroRNAs (miRNAs) are critical regulators of cardiovascular function and are involved in various facets of cardiovascular biology. While the knowledge of the role of miRNAs in IHD as diagnostic biomarkers has improved, research emphasis on how miRNAs can be effectively used for diagnosis and prognosis of IHD is crucial. This review provides an overview of the biology, therapeutic and diagnostic potential, as well as the caveats of using miRNAs in IHD based on existing research.


Asunto(s)
MicroARNs , Isquemia Miocárdica , Biomarcadores , Humanos , MicroARNs/genética , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/genética
10.
Front Immunol ; 13: 940877, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928810

RESUMEN

Nile tilapia (Oreochromis niloticus) is one of the most important food fish in the world. However, the farming industry has encountered significant challenges, such as pathogen infections. Toll-like receptors (TLRs) play an essential role in the initiation of the innate immune system against pathogens. Sterile alpha and TIR motif-containing protein 1 (SARM1) is one of the most evolutionarily conserved TLR adaptors, and its orthologs are present in various species from worms to humans. SARM1 plays an important role in negatively regulating TIR domain-containing adaptor proteins inducing IFNß (TRIF)-dependent TLR signaling in mammals, but its immune function remains poorly understood in fish. In this study, O. niloticus SARM1 (OnSARM1) was cloned and its evolutionary status was verified using bioinformatic analyses. mRNA expression of OnSARM1 was found at a higher level in the trunk kidney and muscle in healthy fish. The examination of its subcellular location showed that the OnSARM1 was detected only in the cytoplasm of THK cells, and colocalized with OnMyD88, OnTRIF and OnTRIF in small speckle-like condensed granules. The transcript levels of OnMyD88, OnTIRAP, OnTRIF, and downstream effectors, including interleukin (IL)-1ß, IL-8, IL-12b and type I interferon (IFN)d2.13, were regulated conversely to the expression of OnSARM1 in the head kidney from Aeromonas hydrophila and Streptococcus agalactiae infected fish. Moreover, the treatment of THK cells with lysates from A. hydrophila and S. agalactiae enhanced the activity of the NF-κB promoter, but the effects were inhibited in the OnSARM1 overexpressed THK cells. Overexpression of OnSARM1 alone did not activate the NF-κB-luciferase reporter, but it suppressed OnMyD88- and OnTIRAP-mediated NF-κB promoter activity. Additionally, OnSARM1 inhibited the mRNA expression of proinflammatory cytokines and hepcidin in A. hydrophila lysate stimulated THK cells. Taken together, these findings suggest that OnSARM1 serves as a negative regulator by inhibiting NF-κB activity, thereby influencing the transcript level of proinflammatory cytokines and antimicrobial peptides in the antibacterial responses.


Asunto(s)
Cíclidos , Animales , Citocinas/genética , Citocinas/metabolismo , Proteínas de Peces , Regulación de la Expresión Génica , Humanos , Inmunidad Innata/genética , Mamíferos/genética , FN-kappa B/metabolismo , ARN Mensajero/metabolismo
11.
Life (Basel) ; 12(7)2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35888106

RESUMEN

Dysregulation of fibroblast growth factors is linked to the pathogenesis of bladder cancer. The role of FGF1 and FGF3 is evident in bladder cancer; however, the role of FGF4 is vague. Despite being reported that FGF4 interacts with FGF1 and FGF3 in MAPK pathways, its pathogenesis and mechanism of action are yet to be elucidated. Therefore, this study aimed to elucidate pathogenic nsSNPs and their role in the prognosis of bladder cancer by employing in-silico analysis. The nsSNPs of FGF4 were retrieved from the NCBI database. Different in silico tools, PROVEAN, SIFT, PolyPhen-2, SNPs&GO, and PhD-SNP, were used for predicting the pathogenicity of the nsSNPs. Twenty-seven nsSNPs were identified as "damaging", and further stability analysis using I-Mutant 2.0 and MUPro indicated 22 nsSNPs to cause decreased stability (DDG scores < −0.5). Conservation analysis predicted that Q97K, G106V, N164S, and N167S were highly conserved and exposed. Biophysical characterisation indicated these nsSNPs were not tolerated, and protein-protein interaction analysis showed their involvement in the GFR-MAPK signalling pathway. Furthermore, Kaplan Meier bioinformatics analyses indicated that the FGF4 gene deregulation affected the overall survival rate of patients with bladder cancer, leading to prognostic significance. Thus, based on these analyses, our study suggests that the reported nsSNPs of FGF4 may serve as potential targets for diagnoses and therapeutic interventions focusing on bladder cancer.

12.
Antioxidants (Basel) ; 11(6)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35740071

RESUMEN

Cardiovascular disease (CVD) remains the leading cause of death globally, with unhealthy lifestyles today greatly increasing the risk. Over the decades, scientific investigation has been carried out on reactive oxygen species (ROS) and their resultant oxidative stress based on their changes made on biological targets such as lipids, proteins, and DNA. Since the existing clinical studies with antioxidants failed to provide relevant findings on CVD prediction, the focus has shifted towards recognition of oxidised targets as biomarkers to predict prognosis and response to accurate treatment. The identification of redox markers could help clinicians in providing risk stratification for CVD events beyond the traditional prognostic and diagnostic targets. This review will focus on how oxidant-related parameters can be applied as biomarkers for CVD based on recent clinical evidence.

13.
Molecules ; 27(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35684521

RESUMEN

Essential oils (EOs) are intricate combinations of evaporative compounds produced by aromatic plants and extracted by distillation or expression. EOs are natural secondary metabolites derived from plants and have been found to be useful in food and nutraceutical manufacturing, perfumery and cosmetics; they have also been found to alleviate the phenomenon of antimicrobial resistance (AMR) in addition to functioning as antibacterial and antifungal agents, balancing menstrual cycles and being efficacious as an immune system booster. Several main aldehyde constituents can be found in different types of EOs, and thus, aldehydes and their derivatives will be the main focus of this study with regard to their antimicrobial, antioxidative, anti-inflammatory and immunomodulatory effects. This brief study also explores the activity of aldehydes and their derivatives against pathogenic bacteria for future use in the clinical setting.


Asunto(s)
Antibacterianos/farmacología , Antiinfecciosos , Aceites Volátiles , Aldehídos/farmacología , Antiinfecciosos/farmacología , Bacterias , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/farmacología
14.
Antibiotics (Basel) ; 11(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35453220

RESUMEN

Despite culturing the fastest-growing animal in animal husbandry, fish farmers are often adversely economically affected by pathogenic disease outbreaks across the world. Although there are available solutions such as the application of antibiotics to mitigate this phenomenon, the excessive and injudicious use of antibiotics has brought with it major concerns to the community at large, mainly due to the rapid development of resistant bacteria. At present, the use of natural compounds such as phytocompounds that can be an alternative to antibiotics is being explored to address the issue of antimicrobial resistance (AMR). These phytocompounds are bioactive agents that can be found in many species of plants and hold much potential. In this review, we will discuss phytocompounds extracted from plants that have been evidenced to contain antimicrobial, antifungal, antiviral and antiparasitic activities. Further, it has also been found that compounds such as terpenes, phenolics, saponins and alkaloids can be beneficial to the aquaculture industry when applied. This review will focus mainly on compounds that have been identified between 2000 and 2021. It is hoped this review will shed light on promising phytocompounds that can potentially and effectively mitigate AMR.

15.
Fish Shellfish Immunol ; 119: 587-601, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34743023

RESUMEN

Toll-like receptors (TLRs) are evolutionarily conserved proteins of pattern recognition receptors (PRRs) and play a crucial role in innate immune systems recognition of conserved pathogen-related molecular samples (PAMPs). We identified and characterized TLR18 from Nile tilapia (Oreochromis niloticus), OnTLR18, to elucidate its role in tissue expression patterns, modulation of gene expression after microbial challenge and TLR ligands, subcellular localization in fish and human cells, and the possible effectors TLR18 induces in a melanomacrophage-like cell line (tilapia head kidney (THK) cells). OnTLR18 expression was detected in all tissues examined, with the highest levels in the intestine and the lowest in the liver. OnTLR18 transcript was up-regulated in immune-related organs after bacterial and polyinosinic-polycytidylic acid (poly I:C) challenges and in the THK cells after lipopolysaccharide (LPS) stimulation. In transfected THK and human embryonic kidney (HEK) 293 cells, OnTLR18 localizes in the intracellular compartment. OnMyD88 and OnTRIF, but not OnTIRAP, were co-immunoprecipitated with OnTLR18, suggesting that the former two molecules are recruited by OnTLR18 as adaptors. The constitutively active form of OnTLR18 induced the production of pro-inflammatory cytokines, type I interferon (IFN), and antimicrobial peptides such as tumor necrosis factor α, interferon (IFN) d2.13, tilapia piscidin (TP)2, TP3, TP4, and hepcidin in THK cells. Our results suggest that OnTLR18 plays an important role in innate immunity through initiating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and IFN signaling pathways via OnMyD88 and OnTRIF and induces the production of various effectors in melanomacrophages.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular , Animales , Péptidos Antimicrobianos , Cíclidos/genética , Cíclidos/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Células HEK293 , Humanos , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Poli I-C/farmacología
16.
Mar Drugs ; 19(5)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925365

RESUMEN

Marine sponges are sessile invertebrates that can be found in temperate, polar and tropical regions. They are known to be major contributors of bioactive compounds, which are discovered in and extracted from the marine environment. The compounds extracted from these sponges are known to exhibit various bioactivities, such as antimicrobial, antitumor and general cytotoxicity. For example, various compounds isolated from Theonella swinhoei have showcased various bioactivities, such as those that are antibacterial, antiviral and antifungal. In this review, we discuss bioactive compounds that have been identified from marine sponges that showcase the ability to act as antibacterial, antiviral, anti-malarial and antifungal agents against human pathogens and fish pathogens in the aquaculture industry. Moreover, the application of such compounds as antimicrobial agents in other veterinary commodities, such as poultry, cattle farming and domesticated cats, is discussed, along with a brief discussion regarding the mode of action of these compounds on the targeted sites in various pathogens. The bioactivity of the compounds discussed in this review is focused mainly on compounds that have been identified between 2000 and 2020 and includes the novel compounds discovered from 2018 to 2021.


Asunto(s)
Antiinfecciosos/farmacología , Enfermedades Transmisibles/veterinaria , Enfermedades de los Peces/tratamiento farmacológico , Poríferos/metabolismo , Drogas Veterinarias/farmacología , Animales , Antiinfecciosos/aislamiento & purificación , Acuicultura , Enfermedades Transmisibles/tratamiento farmacológico , Humanos , Estructura Molecular , Relación Estructura-Actividad , Drogas Veterinarias/aislamiento & purificación
17.
J Fish Biol ; 99(1): 206-218, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33629400

RESUMEN

Climate warming and low pH environment are known to negatively impact all levels of aquatic organism from cellular to organism and population levels. For ammonotelic freshwater species, any abiotic factor fluctuation will cause disturbance to the fish, specifically at the gills which act as a multifunctional organ to support all biological processes. Therefore, this study was designed to investigate the effect of temperature (28 vs. 32°C) and pH (7.0 vs. 5.0) stress on the gill plasticity of Hoven's carp after 20 days of continuous exposure. The results demonstrated that high temperature and low pH caused severe changes on the primary and secondary lamellae as well as the cells within lamellae. An increasing trend of the proportion available for gas exchange was noticed at high temperature in both pH exposures, which resulted from a reduction of the primary lamellae width with elongated and thinner secondary lamellae compared to fishes at ambient temperature. Following exposure to high temperature and acidic pH, Hoven's carp experienced gill modifications including aneurysm, oedema, hypertrophy, curling of secondary lamellae, epithelial lifting, hyperplasia and lamellae fusion. These modifications are indicators of the coping mechanism of Hoven's carp to the changing environment in order to survive.


Asunto(s)
Carpas , Branquias , Adaptación Fisiológica , Animales , Concentración de Iones de Hidrógeno , Temperatura
18.
Plant Physiol Biochem ; 161: 131-142, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33581621

RESUMEN

Lignosulfonate (LS) is a commonly used to promote plant growth. However, the underlying growth promoting responses of LS in plant remain unknown. Therefore, this study was undertaken to elucidate the underlying growth promoting mechanisms of LS, specifically calcium lignosulfonate (CaLS). Addition of 100 mg/L CaLS in phytohormone-free media enhanced recalcitrant indica rice cv. MR219 callus proliferation rate and adventitious root formation. Both, auxin related genes (OsNIT1, OsTAA1 and OsYUC1) and tryptophan biosynthesis proteins were upregulated in CaLS-treated calli which corroborated with increased of endogenous auxin content. Moreover, increment of OsWOX11 gene on CaLS-treated calli implying that the raised of endogenous auxin was utilized as a cue to enhance adventitious root development. Besides, CaLS-treated calli showed higher nutrient ions content with major increment in calcium and potassium ions. Consistently, increased of potassium protein kinases genes (OsAKT1, OsHAK5, OsCBL, OsCIPK23 and OsCamk1) were also recorded. In CaLS treated calli, the significant increase of calcium ion was observed starting from week one while potassium ion only recorded significant increase on week two onwards, suggesting that increment of potassium ion might be dependent on the calcium ion content in the plant cell. Additionally, reduced callus blackening was also coherent with downregulation of ROS scavenging protein and reduced H2O2 content in CaLS-treated calli suggesting the role of CaLS in mediating cellular homeostasis via prevention of oxidative burst in the cell. Taken together, CaLS successfully improved MR219 callus proliferation and root formation by increasing endogenous auxin synthesis, enhancing nutrients uptake and regulating cellular homeostasis.


Asunto(s)
Oryza , Proliferación Celular , Peróxido de Hidrógeno , Ácidos Indolacéticos , Lignina/análogos & derivados , Nutrientes , Raíces de Plantas
19.
Front Immunol ; 12: 773193, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975860

RESUMEN

The gastrointestinal immune system plays an important role in immune homeostasis regulation. It regulates the symbiotic host-microbiome interactions by training and developing the host's innate and adaptive immunity. This interaction plays a vital role in host defence mechanisms and at the same time, balancing the endogenous perturbations of the host immune homeostasis. The fish gastrointestinal immune system is armed with intricate diffused gut-associated lymphoid tissues (GALTs) that establish tolerance toward the enormous commensal gut microbiome while preserving immune responses against the intrusion of enteric pathogens. A comprehensive understanding of the intestinal immune system is a prerequisite for developing an oral vaccine and immunostimulants in aquaculture, particularly in cultured fish species. In this review, we outline the remarkable features of gut immunity and the essential components of gut-associated lymphoid tissue. The mechanistic principles underlying the antigen absorption and uptake through the intestinal epithelial, and the subsequent immune activation through a series of molecular events are reviewed. The emphasis is on the significance of gut immunity in oral administration of immunoprophylactics, and the different potential adjuvants that circumvent intestinal immune tolerance. Comprehension of the intestinal immune system is pivotal for developing effective fish vaccines that can be delivered orally, which is less labour-intensive and could improve fish health and facilitate disease management in the aquaculture industry.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Acuicultura/métodos , Enfermedades de los Peces/prevención & control , Inmunidad Mucosa , Mucosa Intestinal/inmunología , Vacunas/uso terapéutico , Administración Oral , Animales , Peces
20.
Pol J Microbiol ; 69: 1-6, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32162852

RESUMEN

Natural products such as essential oils (EOs) are secondary metabolites that can be obtained from either plant or animal sources or produced by microorganisms. Much attention has been given to exploring the use of secondary metabolites as natural antibacterial agents. This study investigates the antibacterial activity and mechanism of ß-caryophyllene, a compound that can be found in various EOs, against Bacillus cereus. The minimum inhibitory concentration of ß-caryophyllene against B. cereus was 2.5% (v/v), whereas killing kinetics of ß-caryophyllene at minimum inhibitory concentration recorded complete bactericidal activity within 2 hours. Zeta-potential measurement in the cells treated with half the minimum inhibitory concentration of ß-caryophyllene at 1.25% (v/v) showed an increase in the membrane permeability surface charge to -3.98 mV, compared to untreated cells (-5.46 mV). Intracellular contents leakage of UV-absorbing materials was detected in the cells treated with ß-caryophyllene. Additionally, ß-caryophyllene does not interfere with the efflux activity of B. cereus via the ethidium bromide influx/efflux activity. The results revealed that ß-caryophyllene was able to alter membrane permeability and integrity of B. cereus, leading to membrane damage and intracellular content leakage, which eventually caused cell death.Natural products such as essential oils (EOs) are secondary metabolites that can be obtained from either plant or animal sources or produced by microorganisms. Much attention has been given to exploring the use of secondary metabolites as natural antibacterial agents. This study investigates the antibacterial activity and mechanism of ß-caryophyllene, a compound that can be found in various EOs, against Bacillus cereus. The minimum inhibitory concentration of ß-caryophyllene against B. cereus was 2.5% (v/v), whereas killing kinetics of ß-caryophyllene at minimum inhibitory concentration recorded complete bactericidal activity within 2 hours. Zeta-potential measurement in the cells treated with half the minimum inhibitory concentration of ß-caryophyllene at 1.25% (v/v) showed an increase in the membrane permeability surface charge to ­3.98 mV, compared to untreated cells (­5.46 mV). Intracellular contents leakage of UV-absorbing materials was detected in the cells treated with ß-caryophyllene. Additionally, ß-caryophyllene does not interfere with the efflux activity of B. cereus via the ethidium bromide influx/efflux activity. The results revealed that ß-caryophyllene was able to alter membrane permeability and integrity of B. cereus, leading to membrane damage and intracellular content leakage, which eventually caused cell death.


Asunto(s)
Antibacterianos/farmacología , Bacillus cereus/efectos de los fármacos , Aceites Volátiles/farmacología , Sesquiterpenos Policíclicos/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Microbiología de Alimentos/métodos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología , Metabolismo Secundario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...