Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 43(11): 2611-2614, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29856442

RESUMEN

We design an optical feedback network making use of machine learning (ML) techniques and demonstrate via simulations its ability to correct for the effects of turbulent propagation on optical modes. This artificial neural network scheme relies only on measuring the intensity profile of the distorted modes, making the approach simple and robust. The network results in the generation of various mode profiles at the transmitter that, after propagation through turbulence, closely resemble the desired target mode. The corrected optical mode profiles at the receiver are found to be nearly identical to the desired profiles, with near-zero mean square error indices. We are hopeful that the present results combining the fields of ML and optical communications will greatly enhance the robustness of free-space optical links.

2.
Appl Opt ; 57(15): 4180-4190, 2018 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-29791393

RESUMEN

Information transfer rates in optical communications may be dramatically increased by making use of spatially non-Gaussian states of light. Here, we demonstrate the ability of deep neural networks to classify numerically generated, noisy Laguerre-Gauss modes of up to 100 quanta of orbital angular momentum with near-unity fidelity. The scheme relies only on the intensity profile of the detected modes, allowing for considerable simplification of current measurement schemes required to sort the states containing increasing degrees of orbital angular momentum. We also present results that show the strength of deep neural networks in the classification of experimental superpositions of Laguerre-Gauss modes when the networks are trained solely using simulated images. It is anticipated that these results will allow for an enhancement of current optical communications technologies.

3.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 72(Pt 4): 439-59, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27484368

RESUMEN

The sixth blind test of organic crystal structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal and a bulky flexible molecule. This blind test has seen substantial growth in the number of participants, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and `best practices' for performing CSP calculations. All of the targets, apart from a single potentially disordered Z' = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA