Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894622

RESUMEN

Success of gene therapy relies on the durable expression and activity of transgene in target tissues. In vivo molecular imaging approaches using positron emission tomography (PET) can non-invasively measure magnitude, location, and durability of transgene expression via direct transgene or indirect reporter gene imaging in target tissues, providing the most proximal PK/PD biomarker for gene therapy trials. Herein, we report the radiosynthesis of a novel PET tracer [18F]AGAL, targeting alpha galactosidase A (α-GAL), a lysosomal enzyme deficient in Fabry disease, and evaluation of its selectivity, specificity, and pharmacokinetic properties in vitro. [18F]AGAL was synthesized via a Cu-catalyzed click reaction between fluorinated pentyne and an aziridine-based galactopyranose precursor with a high yield of 110 mCi, high radiochemical purity of >97% and molar activity of 6 Ci/µmol. The fluorinated AGAL probe showed high α-GAL affinity with IC50 of 30 nM, high pharmacological selectivity (≥50% inhibition on >160 proteins), and suitable pharmacokinetic properties (moderate to low clearance and stability in plasma across species). In vivo [18F]AGAL PET imaging in mice showed high uptake in peripheral organs with rapid renal clearance. These promising results encourage further development of this PET tracer for in vivo imaging of α-GAL expression in target tissues affected by Fabry disease.


Asunto(s)
Enfermedad de Fabry , alfa-Galactosidasa , Ratones , Animales , alfa-Galactosidasa/genética , Enfermedad de Fabry/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Hidrolasas , Radioisótopos de Flúor/química
2.
Sci Transl Med ; 14(627): eabg3684, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35020407

RESUMEN

Positron emission tomography (PET) ligands play an important role in the development of therapeutics by serving as target engagement or pharmacodynamic biomarkers. Here, we describe the discovery and translation of the PET tracer [11C]MK-6884 from rhesus monkeys to patients with Alzheimer's disease (AD). [3H]MK-6884/[11C]MK-6884 binds with high binding affinity and good selectivity to an allosteric site on M4 muscarinic cholinergic receptors (M4Rs) in vitro and shows a regional distribution in the brain consistent with M4R localization in vivo. The tracer demonstrates target engagement of positive allosteric modulators of the M4R (M4 PAMs) through competitive binding interactions. [11C]MK-6884 binding is enhanced in vitro by the orthosteric M4R agonist carbachol and indirectly in vivo by the acetylcholinesterase inhibitor donepezil in rhesus monkeys and healthy volunteers, consistent with its pharmacology as a highly cooperative M4 PAM. PET imaging of [11C]MK-6884 in patients with AD identified substantial regional differences quantified as nondisplaceable binding potential (BPND) of [11C]MK-6884. These results suggest that [11C]MK-6884 is a useful target engagement biomarker for M4 PAMs but may also act as a sensitive probe of neuropathological changes in the brains of patients with AD.


Asunto(s)
Enfermedad de Alzheimer , Acetilcolinesterasa , Enfermedad de Alzheimer/diagnóstico por imagen , Animales , Humanos , Macaca mulatta , Tomografía de Emisión de Positrones/métodos , Receptores Muscarínicos
3.
EJNMMI Res ; 11(1): 49, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34046730

RESUMEN

BACKGROUND: [18F]MK-6240 is a PET tracer with sub-nanomolar affinity for neurofibrillary tangles. Therefore, tau quantification is possible with [18F]MK-6240 PET/CT scans, and it can be used for assessment of Alzheimer's disease. However, long acquisition scans are required to provide fully quantitative estimates of pharmacokinetic parameters. Therefore, on the present study, dual-time-window (DTW) acquisitions was simulated to reduce PET/CT acquisition time, while taking into consideration perfusion changes and possible scanning protocol non-compliance. To that end, time activity curves (TACs) representing a 120-min acquisition (TAC120) were simulated using a two-tissue compartment model with metabolite corrected arterial input function from 90-min dynamic [18F]MK-6240 PET scans of three healthy control subjects and five subjects with mild cognitive impairment or Alzheimer's disease. Therefore, TACs corresponding to different levels of specific binding were generated and then various perfusion changes were simulated. Next, DTW acquisitions were simulated consisting of an acquisition starting at tracer injection, a break and a second acquisition starting at 90 min post-injection. Finally, non-compliance with the PET/CT scanning protocol were simulated to assess its impact on quantification. All TACs were quantified using reference Logan's distribution volume ratio (DVR) and standardized uptake value ratio (SUVR90) using the cerebellar cortex as reference region. RESULTS: It was found that DVR from a DTW protocol with a 60-min break between two 30-min dynamic scans closely approximates the DVR from the uninterrupted TAC120, with a regional bias smaller than 2.5%. Moreover, SUVR90 estimates were more susceptible (regional bias ≤ 19%) to changes in perfusion compared to DVR from a DTW TAC (regional bias ≤ 10%). Similarly, SUVR90 was affected by late-time scanning protocol delays reaching an increase of 8% for a 20-min delay, while DVR was not affected (regional bias < 1.5%) by DTW protocol non-compliance. CONCLUSIONS: Therefore, such DTW protocol has the potential to increase patient comfort and throughput without compromising quantitative accuracy and is more reliable against SUVR in terms of perfusion changes and protocol deviations, which could prove beneficial for drug effect assessment and patient follow-up using longitudinal [18F]MK-6240 PET imaging.

4.
Nature ; 589(7843): 542-547, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33238289

RESUMEN

Positron emission tomography (PET) radioligands (radioactively labelled tracer compounds) are extremely useful for in vivo characterization of central nervous system drug candidates, neurodegenerative diseases and numerous oncology targets1. Both tritium and carbon-11 radioisotopologues are generally necessary for in vitro and in vivo characterization of radioligands2, yet there exist few radiolabelling protocols for the synthesis of either, inhibiting the development of PET radioligands. The synthesis of such radioligands also needs to be very rapid owing to the short half-life of carbon-11. Here we report a versatile and rapid metallaphotoredox-catalysed method for late-stage installation of both tritium and carbon-11 into the desired compounds via methylation of pharmaceutical precursors bearing aryl and alkyl bromides. Methyl groups are among the most prevalent structural elements found in bioactive molecules, and so this synthetic approach simplifies the discovery of radioligands. To demonstrate the breadth of applicability of this technique, we perform rapid synthesis of 20 tritiated and 10 carbon-11-labelled complex pharmaceuticals and PET radioligands, including a one-step radiosynthesis of the clinically used compounds [11C]UCB-J and [11C]PHNO. We further outline the direct utility of this protocol for preclinical PET imaging and its translation to automated radiosynthesis for routine radiotracer production in human clinical imaging. We also demonstrate this protocol for the installation of other diverse and pharmaceutically useful isotopes, including carbon-14, carbon-13 and deuterium.


Asunto(s)
Técnicas de Química Sintética , Ligandos , Procesos Fotoquímicos , Tomografía de Emisión de Positrones/métodos , Radioisótopos/química , Alquilación , Radioisótopos de Carbono/química , Glipizida/análogos & derivados , Glipizida/química , Metilación , Oxidación-Reducción
5.
J Cereb Blood Flow Metab ; 40(8): 1576-1585, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32065076

RESUMEN

It is a growing concern that outcomes of neuroimaging studies often cannot be replicated. To counteract this, the magnetic resonance (MR) neuroimaging community has promoted acquisition standards and created data sharing platforms, based on a consensus on how to organize and share MR neuroimaging data. Here, we take a similar approach to positron emission tomography (PET) data. To facilitate comparison of findings across studies, we first recommend publication standards for tracer characteristics, image acquisition, image preprocessing, and outcome estimation for PET neuroimaging data. The co-authors of this paper, representing more than 25 PET centers worldwide, voted to classify information as mandatory, recommended, or optional. Second, we describe a framework to facilitate data archiving and data sharing within and across centers. Because of the high cost of PET neuroimaging studies, sample sizes tend to be small and relatively few sites worldwide have the required multidisciplinary expertise to properly conduct and analyze PET studies. Data sharing will make it easier to combine datasets from different centers to achieve larger sample sizes and stronger statistical power to test hypotheses. The combining of datasets from different centers may be enhanced by adoption of a common set of best practices in data acquisition and analysis.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Neuroimagen/métodos , Tomografía de Emisión de Positrones/métodos , Guías de Práctica Clínica como Asunto , Consenso , Fluorodesoxiglucosa F18 , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Neuroimagen/normas , Tomografía de Emisión de Positrones/normas , Radiofármacos , Reproducibilidad de los Resultados
6.
Mol Imaging Biol ; 22(1): 173-180, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31111397

RESUMEN

PURPOSE: [18F]MK-6240 is a selective, high-affinity positron emission tomography tracer for imaging neurofibrillary tangles, a key pathological signature that correlates with cognitive decline in Alzheimer disease. This report provides safety information from preclinical toxicology studies and first-in-human whole-body biodistribution and dosimetry studies of [18F]MK-6240 for its potential application in human brain imaging studies. PROCEDURES: MK-6240 was administered intravenously (IV) in a 7-day rat toxicity study at × 50, × 100, and × 1000 dose margins relative to projected highest clinical dose of 0.333 µg/kg. The IV formulation of MK-6240 for clinical use and the formulation used in the 7-day rat toxicity study was tested for hemolysis potential in human and Wistar rat whole blood. Sequential whole-body positron emission tomography scans were performed in three healthy young subjects after IV bolus injection of 180 ± 0.3 MBq [18F]MK-6240 to characterize organ biodistribution and estimate whole-body radiation exposure (effective dose). RESULTS: MK-6240 administered IV in a 7-day rat toxicity study did not show any test article-related changes. The no-observed-adverse-effect level in rats was ≥ 333 µg/kg/day which provides a margin 1000-fold over an anticipated maximum clinical dose of 0.333 µg/kg. Additionally, the MK-6240 formulation was not hemolytic in human or Wistar rat blood. [18F]MK-6240 activity was widely distributed to the brain and the rest of the body, with organ absorbed doses largest for the gall bladder (202 µGy/MBq). The average (±SD) effective dose was 29.4 ± 0.6 µSv/MBq, which is in the typical range for F-18 radiolabeled ligands. CONCLUSIONS: Microdoses of [18F]MK-6240 are safe for clinical positron emission tomography imaging studies. Single IV administration of 185 MBq (5 mCi) [18F]MK-6240 is anticipated to result in a total human effective dose of 5.4 mSv and thus allows multiple positron emission tomography scans of the same subject per year.


Asunto(s)
Enfermedad de Alzheimer/patología , Radioisótopos de Flúor/farmacocinética , Isoquinolinas/farmacocinética , Ovillos Neurofibrilares/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiometría/métodos , Imagen de Cuerpo Entero/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Animales , Femenino , Voluntarios Sanos , Humanos , Masculino , Ovillos Neurofibrilares/metabolismo , Seguridad del Paciente , Radiofármacos/farmacocinética , Ratas , Ratas Wistar , Distribución Tisular
7.
J Cereb Blood Flow Metab ; 40(11): 2179-2187, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31711342

RESUMEN

[18F]MK-6240 is a selective, high-affinity PET radiotracer for imaging neurofibrillary tangles (NFT) in Alzheimer's disease (AD). Herein, we report test-retest (T-RT) reproducibility of [18F]MK-6240 in AD and healthy volunteers (HV). Twelve subjects with AD and three cognitively normal HV were enrolled in the study and dynamically scanned for 150 min with [18F]MK-6240 under a T-RT protocol. Two radioactivity doses were investigated: 165 ± 3 MBq (n = 6) and 300 ± 40 MBq (n = 9). Serial arterial blood samples were taken for each scan to obtain metabolite-corrected input functions. Following intravenous administration of [18F]MK-6240, the tracer rapidly partitioned into the brain and its heterogenous distribution pattern was consistent with known NFT pathology in AD. In contrast, uptake in HV was low and uniform across the brain parenchyma. Across all subjects, average T-RT variabilities in NFT-rich regions were ∼21%, ∼14% and ∼6% for various quantitative metrics: total distribution volume (VT), binding potential (BPND), and standardized uptake ratio (SUVR90-120), respectively. No significant differences in SUVR T-RT variability were observed between the high and low injected radioactivity groups (5.6% and 6.1%, respectively). This work suggests [18F]MK-6240 has adequate SUVR T-RT characteristics supporting the use of this outcome in future studies.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Cognición , Fluorodesoxiglucosa F18 , Isoquinolinas , Ovillos Neurofibrilares/patología , Tomografía de Emisión de Positrones , Adulto , Femenino , Humanos , Masculino , Tomografía de Emisión de Positrones/métodos
8.
J Cereb Blood Flow Metab ; 39(7): 1306-1313, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-29430995

RESUMEN

Although still a matter of controversy, disrupted in schizophrenia protein 1 (DISC1) was suggested as a potential inhibitor of phosphodiesterase 4 (PDE4). We used Disc1 locus impairment (LI) mice to investigate the interaction between PDE4 and DISC 1 in vivo and in vitro. [11C](R)-Rolipram binding was measured by PET in LI (n = 11) and C57BL/6 wild-type (WT, n = 9) mice. [11C](R)-Rolipram total distribution volumes (VT) were calculated and corrected for plasma-free fraction (fP) measured in a separate group of LI (n = 6) and WT (n = 7) mice. PDE4 enzyme activity was measured using in vitro samples of cerebral cortices from groups of LI (n = 4), heterozygote (n = 4), and WT (n = 4) mice. Disc1 LI mice showed a 41% increase in VT (18 ± 6 vs. 13±4 mL/cm3, P = 0.04) compared to WT mice. VT/fP showed a 73% significant increase (90 ± 31 vs. 52 ± 15 mL/cm3, P = 0.004) in Disc1 LI compared to WT mice. PDE4 enzymatic activity assay confirmed in vivo findings showing significant group differences (p < 0.0001). In conclusion, PDE4 activity was increased in the absence of critical DISC1 protein isoforms both in vivo and in vitro. Additionally, [11C](R)-Rolipram PET was sensitive enough to assess altered PDE4 activity caused by PDE4-DISC1 interaction.


Asunto(s)
Corteza Cerebral/enzimología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Tomografía de Emisión de Positrones/métodos , Animales , Radioisótopos de Carbono , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Eliminación de Gen , Haploinsuficiencia , Heterocigoto , Homocigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Inhibidores de Fosfodiesterasa 4 , Rolipram/metabolismo
9.
J Nucl Med ; 60(1): 107-114, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29880509

RESUMEN

18F-MK-6240 (18F-labeled 6-(fluoro)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine) is a highly selective, subnanomolar-affinity PET tracer for imaging neurofibrillary tangles (NFTs). Plasma kinetics, brain uptake, and preliminary quantitative analysis of 18F-MK-6240 in healthy elderly (HE) subjects, subjects with clinically probable Alzheimer disease (AD), and subjects with amnestic mild cognitive impairment were characterized in a study that is, to our knowledge, the first to be performed on humans. Methods: Dynamic PET scans of up to 150 min were performed on 4 cognitively normal HE subjects, 4 AD subjects, and 2 amnestic mild cognitive impairment subjects after a bolus injection of 152-169 MBq of 18F-MK-6240 to evaluate tracer kinetics and distribution in brain. Regional SUV ratio (SUVR) and distribution volume ratio were determined using the cerebellar cortex as a reference region. Total distribution volume was assessed by compartmental modeling using radiometabolite-corrected input function in a subgroup of 6 subjects. Results:18F-MK-6240 had rapid brain uptake with a peak SUV of 3-5, followed by a uniformly quick washout from all brain regions in HE subjects; slower clearance was observed in regions commonly associated with NFT deposition in AD subjects. In AD subjects, SUVR between 60 and 90 min after injection was high (approximately 2-4) in regions associated with NFT deposition, whereas in HE subjects, SUVR was approximately 1 across all brain regions, suggesting high tracer selectivity for binding NFTs in vivo. 18F-MK-6240 total distribution volume was approximately 2- to 3-fold higher in neocortical and medial temporal brain regions of AD subjects than in HE subjects and stabilized by 60 min in both groups. Distribution volume ratio estimated by the Logan reference tissue model or compartmental modeling correlated well (R2 > 0.9) to SUVR from 60 to 90 min for AD subjects. Conclusion:18F-MK-6240 exhibited favorable kinetics and high binding levels to brain regions with a plausible pattern for NFT deposition in AD subjects. In comparison, negligible tracer binding was observed in HE subjects. This pilot study suggests that simplified ratio methods such as SUVR can be used to quantify NFT binding. These results support further clinical development of 18F-MK-6240 for potential application in longitudinal studies.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Encéfalo/patología , Radioisótopos de Flúor , Isoquinolinas/metabolismo , Ovillos Neurofibrilares/metabolismo , Tomografía de Emisión de Positrones , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Estudios de Casos y Controles , Femenino , Humanos , Isoquinolinas/sangre , Cinética , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Proyectos Piloto , Trazadores Radiactivos
10.
J Cereb Blood Flow Metab ; 37(7): 2458-2470, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27629098

RESUMEN

Of the two 18F-labeled PET ligands currently available to image metabotropic glutamate receptor 5 (mGluR5), [18F]FPEB is reportedly superior because [18F]SP203 undergoes glutathionlyation, generating [18F]-fluoride ion that accumulates in brain and skull. To allow multiple PET studies on the same day with lower radiation exposure, we prepared [11C]FPEB and [11C]SP203 from [11C]hydrogen cyanide and compared their abilities to accurately quantify mGluR5 in human brain, especially as regards radiometabolite accumulation. Genomic plot was used to estimate the ratio of specific-to-nondisplaceable uptake ( BPND) without using a receptor blocking drug. Both tracers quantified mGluR5; however [11C]SP203, like [18F]SP203, had radiometabolite accumulation in brain, as evidenced by increased distribution volume ( VT) over the scan period. Absolute VT values were ∼30% lower for 11C-labeled compared with 18F-labeled radioligands, likely caused by the lower specific activities (and high receptor occupancies) of the 11C radioligands. The genomic plot indicated ∼60% specific binding in cerebellum, which makes it inappropriate as a reference region. Whole-body scans performed in healthy subjects demonstrated a low radiation burden typical for 11C-ligands. Thus, the evidence suggests that [11C]FPEB is superior to [11C]SP203. If prepared in higher specific activity, [11C]FPEB would presumably be as effective as [18F]FPEB for quantifying mGluR5 in human brain.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Nitrilos/farmacocinética , Tomografía de Emisión de Positrones/métodos , Piridinas/farmacocinética , Receptor del Glutamato Metabotropico 5/metabolismo , Tiazoles/farmacocinética , Adulto , Radioisótopos de Carbono , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Ligandos , Masculino , Modelos Biológicos , Nitrilos/sangre , Piridinas/sangre , ARN Mensajero/genética , Cintigrafía , Radiofármacos/farmacocinética , Receptor del Glutamato Metabotropico 5/genética , Tiazoles/sangre , Distribución Tisular , Imagen de Cuerpo Entero
11.
J Nucl Med ; 58(2): 320-325, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27856631

RESUMEN

For PET imaging of 18-kDa translocator protein (TSPO), a biomarker of neuroinflammation, most second-generation radioligands are sensitive to the single nucleotide polymorphism rs6971; however, this is probably not the case for the prototypical agent 11C-PK11195 (11C-labeled N-butan-2-yl-1-(2-chlorophenyl)-N-methylisoquinoline-3-carboxamide), which has a relatively lower signal-to-noise ratio. We recently found that 11C-ER176 (11C-(R)-N-sec-butyl-4-(2-chlorophenyl)-N-methylquinazoline-2-carboxamide), a new analog of 11C-(R)-PK11195, showed little sensitivity to rs6971 when tested in vitro and had high specific binding in monkey brain. This study sought, first, to determine whether the sensitivity of 11C-ER176 in humans is similar to the low sensitivity measured in vitro and, second, to measure the nondisplaceable binding potential (BPND, or the ratio of specific-to-nondisplaceable uptake) of 11C-ER176 in human brain. METHODS: Nine healthy volunteers-3 high-affinity binders (HABs), 3 mixed-affinity binders (MABs), and 3 low-affinity binders (LABs)-were studied with whole-body 11C-ER176 PET imaging. SUVs from 60 to 120 min after injection derived from each organ were compared between genotypes. Eight separate healthy volunteers-3 HABs, 3 MABs, and 2 LABs-underwent brain PET imaging. The 3 HABs underwent a repeated brain scan after TSPO blockade with XBD173 (N-benzyl-N-ethyl-2-(7-methyl-8-oxo-2-phenylpurin-9-yl)acetamide) to determine nondisplaceable distribution volume (VND) via Lassen occupancy plotting and thereby estimate BPND in brain. RESULTS: Regional SUV averaged from 60 to 120 min after injection in brain and peripheral organs with high TSPO densities such as lung and spleen were greater in HABs than in LABs. On the basis of VND determined via the occupancy plot, the whole-brain BPND for LABs was estimated to be 1.4 ± 0.8, which was much lower than that for HABs (4.2 ± 1.3) but about the same as that for HABs with 11C-PBR28 ([methyl-11C]N-acetyl-N-(2-methoxybenzyl)-2-phenoxy-5-pyridinamine)) (∼1.2). CONCLUSION: Obvious in vivo sensitivity to rs6971 was observed in 11C-ER176 that had not been expected from in vitro studies, suggesting that the future development of any improved radioligand for TSPO should consider the possibility that in vitro properties will not be reflected in vivo. We also found that 11C-ER176 has adequately high BPND for all rs6971 genotypes. Thus, the new radioligand would likely have greater sensitivity in detecting abnormalities in patients.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Radioisótopos de Carbono/farmacocinética , Imagen Molecular/métodos , Receptores de GABA/metabolismo , Adulto , Diagnóstico Diferencial , Femenino , Genotipo , Humanos , Masculino , Variaciones Dependientes del Observador , Radiofármacos/farmacocinética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
J Nucl Med ; 57(10): 1599-1606, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27230925

RESUMEN

A PET tracer is desired to help guide the discovery and development of disease-modifying therapeutics for neurodegenerative diseases characterized by neurofibrillary tangles (NFTs), the predominant tau pathology in Alzheimer disease (AD). We describe the preclinical characterization of the NFT PET tracer 18F-MK-6240. METHODS: In vitro binding studies were conducted with 3H-MK-6240 in tissue slices and homogenates from cognitively normal and AD human brain donors to evaluate tracer affinity and selectivity for NFTs. Immunohistochemistry for phosphorylated tau was performed on human brain slices for comparison with 3H-MK-6240 binding patterns on adjacent brain slices. PET studies were performed with 18F-MK-6240 in monkeys to evaluate tracer kinetics and distribution in the brain. 18F-MK-6240 monkey PET studies were conducted after dosing with unlabeled MK-6240 to evaluate tracer binding selectivity in vivo. RESULTS: The 3H-MK-6240 binding pattern was consistent with the distribution of phosphorylated tau in human AD brain slices. 3H-MK-6240 bound with high affinity to human AD brain cortex homogenates containing abundant NFTs but bound poorly to amyloid plaque-rich, NFT-poor AD brain homogenates. 3H-MK-6240 showed no displaceable binding in the subcortical regions of human AD brain slices and in the hippocampus/entorhinal cortex of non-AD human brain homogenates. In monkey PET studies, 18F-MK-6240 displayed rapid and homogeneous distribution in the brain. The 18F-MK-6240 volume of distribution stabilized rapidly, indicating favorable tracer kinetics. No displaceable binding was observed in self-block studies in rhesus monkeys, which do not natively express NFTs. Moderate defluorination was observed as skull uptake. CONCLUSION: 18F-MK-6240 is a promising PET tracer for the in vivo quantification of NFTs in AD patients.


Asunto(s)
Isoquinolinas/química , Ovillos Neurofibrilares , Tomografía de Emisión de Positrones/métodos , Animales , Autorradiografía , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Isoquinolinas/metabolismo , Macaca mulatta , Masculino , Trazadores Radiactivos , Radioquímica
13.
J Med Chem ; 59(10): 4778-89, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27088900

RESUMEN

Neurofibrillary tangles (NFTs) made up of aggregated tau protein have been identified as the pathologic hallmark of several neurodegenerative diseases including Alzheimer's disease. In vivo detection of NFTs using PET imaging represents a unique opportunity to develop a pharmacodynamic tool to accelerate the discovery of new disease modifying therapeutics targeting tau pathology. Herein, we present the discovery of 6-(fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine, 6 ([(18)F]-MK-6240), as a novel PET tracer for detecting NFTs. 6 exhibits high specificity and selectivity for binding to NFTs, with suitable physicochemical properties and in vivo pharmacokinetics.


Asunto(s)
Descubrimiento de Drogas , Isoquinolinas/química , Imagen Molecular , Ovillos Neurofibrilares/patología , Tomografía de Emisión de Positrones , Radioisótopos de Flúor/química , Humanos , Isoquinolinas/síntesis química , Isoquinolinas/farmacocinética , Estructura Molecular , Ovillos Neurofibrilares/metabolismo
14.
J Cereb Blood Flow Metab ; 35(9): 1462-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25873424

RESUMEN

The quantification of dynamic positron emission tomography studies performed with arterial sampling usually requires correcting the input function for the presence of radiometabolites by using a model of the plasma parent fraction (PPf). Here, we show how to include the duration of radioligand injection in the PPf model formulations to achieve a more physiologic description of the plasma measurements. This formulation (here called convoluted model) was tested on simulated data and on three datasets with different parent kinetics: [(11)C]NOP-1A, [(11)C]MePPEP, and [(11)C](R)-rolipram. Results showed that convoluted PPf models better described the fraction of unchanged parent in the plasma compared with standard models for all three datasets (weighted residuals sum of squares up to 25% lower). When considering the effect on tissue quantification, the overall impact on the total volume of distribution (VT) was low. However, the impact was significant and radioligand-dependent on the binding potential (BP) and the microparameters (K1, k2, k3, and k4). Simulated data confirmed that quantification is sensitive to different degrees to PPf model misspecification. Including the injection duration allows obtaining a more accurate correction of the input function for the presence of radiometabolites and this yields a more reliable quantification of the tissue parameters.


Asunto(s)
Bases de Datos Factuales , Modelos Biológicos , Tomografía de Emisión de Positrones , Radiofármacos/farmacocinética , Radiofármacos/uso terapéutico , Femenino , Humanos , Cinética , Masculino
15.
Synapse ; 68(12): 613-623, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25088028

RESUMEN

The serotonin subtype-4 (5-HT4 ) receptor, which is known to be involved physiologically in learning and memory, and pathologically in Alzheimer's disease, anxiety, and other neuropsychiatric disorders-has few radioligands readily available for imaging in vivo. We have previously reported two novel 5-HT4 receptor radioligands, namely [methoxy-11 C](1-butylpiperidin-4-yl)methyl 4-amino-3-methoxybenzoate; [11 C]RX-1), and the [18 F]3-fluoromethoxy analog ([18 F]RX-2), and in this study we evaluated them by PET in rhesus monkey. Brain scans were performed at baseline, receptor preblock or displacement conditions using SB 207710, a 5-HT4 receptor antagonist, on the same day for [11 C]RX-1 and on different days for [18 F]RX-2. Specific-to-nondisplaceable ratio (BPND ) was measured with the simplified reference tissue model from all baseline scans. To determine specific binding, total distribution volume (VT ) was also measured in some monkeys by radiometabolite-corrected arterial input function after ex vivo inhibition of esterases from baseline and blocked scans. Both radioligands showed moderate to high peak brain uptake of radioactivity (2-6 SUV). Regional BPND values were in the rank order of known 5-HT4 receptor distribution with a trend for higher BPND values from [18 F]RX-2. One-tissue compartmental model provided good fits with well identified VT values for both radioligands. In the highest 5-HT4 receptor density region, striatum, 50-60% of total binding was specific. The VT in receptor-poor cerebellum reached stable values by about 60 min for both radioligands indicating little influence of radiometabolites on brain signal. In conclusion, both [11 C]RX-1 and [18 F]RX-2 showed positive attributes for PET imaging of brain 5-HT4 receptors, validating the radioligand design strategy. Synapse 68:613-623, 2014. © 2014 Wiley Periodicals, Inc.

16.
Neuroimage ; 87: 89-95, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24225488

RESUMEN

[(11)C]NOP-1A is a novel high-affinity PET ligand for imaging nociceptin/orphanin FQ peptide (NOP) receptors. Here, we report reproducibility and reliability measures of binding parameter estimates for [(11)C]NOP-1A binding in the brain of healthy humans. After intravenous injection of [(11)C]NOP-1A, PET scans were conducted twice on eleven healthy volunteers on the same (10/11 subjects) or different (1/11 subjects) days. Subjects underwent serial sampling of radial arterial blood to measure parent radioligand concentrations. Distribution volume (VT; a measure of receptor density) was determined by compartmental (one- and two-tissue) modeling in large regions and by simpler regression methods (graphical Logan and bilinear MA1) in both large regions and voxel data. Retest variability and intraclass correlation coefficient (ICC) of VT were determined as measures of reproducibility and reliability respectively. Regional [(11)C]NOP-1A uptake in the brain was high, with a peak radioactivity concentration of 4-7 SUV (standardized uptake value) and a rank order of putamen>cingulate cortex>cerebellum. Brain time-activity curves fitted well in 10 of 11 subjects by unconstrained two-tissue compartmental model. The retest variability of VT was moderately good across brain regions except cerebellum, and was similar across different modeling methods, averaging 12% for large regions and 14% for voxel-based methods. The retest reliability of VT was also moderately good in most brain regions, except thalamus and cerebellum, and was similar across different modeling methods averaging 0.46 for large regions and 0.48 for voxels having gray matter probability >20%. The lowest retest variability and highest retest reliability of VT were achieved by compartmental modeling for large regions, and by the parametric Logan method for voxel-based methods. Moderately good reproducibility and reliability measures of VT for [(11)C]NOP-1A make it a useful PET ligand for comparing NOP receptor binding between different subject groups or under different conditions in the same subject.


Asunto(s)
Encéfalo/diagnóstico por imagen , Péptidos Opioides/farmacocinética , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Receptores Opioides/análisis , Adulto , Área Bajo la Curva , Radioisótopos de Carbono/farmacocinética , Femenino , Humanos , Masculino , Receptores Opioides/metabolismo , Reproducibilidad de los Resultados , Adulto Joven , Receptor de Nociceptina , Nociceptina
17.
Mol Autism ; 4(1): 15, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23706040

RESUMEN

BACKGROUND: Fragile X syndrome (FXS) is a common inherited form of intellectual disability caused by loss of function of the fragile X mental retardation protein. Recent animal studies suggest that upregulated downstream signaling by metabotropic glutamate receptor 5 (mGluR5) might be an important mechanism for cognitive and behavioral abnormalities associated with FXS. However, mGluR5 density in human FXS remains unknown. METHODS: Receptor binding and protein expression were measured in the postmortem prefrontal cortex of 14 FXS patients or carriers and 17 age- and sex-matched control subjects without neurological disorders. In-vitro binding assays were performed using [3H]-labeled 3-methoxy-5-pyridin-2-ylethynylpyridine (MPEPy), a selective and high-affinity negative allosteric modulator of mGluR5, to measure receptor density and the radioligand's dissociation constant, which is inversely proportional to affinity. Immunoblotting was also performed, to measure mGluR5 protein expression. RESULTS: The mGluR5 density increased with marginal significance (+16%; P = 0.058) in the prefrontal cortex of FXS patients or carriers compared with matched healthy controls. No significant change in dissociation constant (-4%; P = 0.293) was observed. Immunoblotting found a significant elevation (+32%; P = 0.048) in mGluR5 protein expression. CONCLUSIONS: Both mGluR5 binding density and protein expression were increased in the brains of FXS patients or carriers, but only expression was significantly different, which could be because of the small sample size and moderate variability. Another important caveat is that the effects of psychotropic medications on mGluR5 expression are largely unknown. Future in-vivo measurement of mGluR5 with positron emission tomography might characterize the role of this receptor in the pathophysiology of FXS and facilitate trials of mGluR5-oriented treatments for this disorder.

18.
J Nucl Med ; 53(3): 385-92, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22312136

RESUMEN

UNLABELLED: Nociceptin/orphanin FQ peptide (NOP) receptor is a new class of opioid receptor that may play a pathophysiologic role in anxiety and drug abuse and is a potential therapeutic target in these disorders. We previously developed a high-affinity PET ligand, (11)C-NOP-1A, which yielded promising results in monkey brain. Here, we assessed the ability of (11)C-NOP-1A to quantify NOP receptors in human brain and estimated its radiation safety profile. METHODS: After intravenous injection of (11)C-NOP-1A, 7 healthy subjects underwent brain PET for 2 h and serial sampling of radial arterial blood to measure parent radioligand concentrations. Distribution volume (V(T); a measure of receptor density) was determined by compartmental (1- and 2-tissue) and noncompartmental (Logan analysis and Ichise's bilinear analysis [MA1]) methods. A separate group of 9 healthy subjects underwent whole-body PET to estimate whole-body radiation exposure (effective dose). RESULTS: After (11)C-NOP-1A injection, the peak concentration of radioactivity in brain was high (∼5-7 standardized uptake values), occurred early (∼10 min), and then washed out quickly. The unconstrained 2-tissue-compartment model gave excellent V(T) identifiability (∼1.1% SE) and fitted the data better than a 1-tissue-compartment model. Regional V(T) values (mL·cm(-3)) ranged from 10.1 in temporal cortex to 5.6 in cerebellum. V(T) was well identified in the initial 70 min of imaging and remained stable for the remaining 50 min, suggesting that brain radioactivity was most likely parent radioligand, as supported by the fact that all plasma radiometabolites of (11)C-NOP-1A were less lipophilic than the parent radioligand. Voxel-based MA1 V(T) values correlated well with results from the 2-tissue-compartment model, showing that parametric methods can be used to compare populations. Whole-body scans showed radioactivity in brain and in peripheral organs expressing NOP receptors, such as heart, pancreas, and spleen. (11)C-NOP-1A was significantly metabolized and excreted via the hepatobiliary route. Gallbladder had the highest radiation exposure (21 µSv/MBq), and the effective dose was 4.3 µSv/MBq. CONCLUSION: (11)C-NOP-1A is a promising radioligand that reliably quantifies NOP receptors in human brain. The effective dose in humans is low and similar to that of other (11)C-labeled radioligands, allowing multiple scans in 1 subject.


Asunto(s)
Encéfalo/diagnóstico por imagen , Compuestos Bicíclicos Heterocíclicos con Puentes , Péptidos Opioides/metabolismo , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Compuestos de Espiro , Imagen de Cuerpo Entero/métodos , Adulto , Biotransformación , Compuestos Bicíclicos Heterocíclicos con Puentes/efectos adversos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacocinética , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Marcaje Isotópico , Modelos Lineales , Imagen por Resonancia Magnética , Masculino , Modelos Estadísticos , Radiometría , Radiofármacos/administración & dosificación , Radiofármacos/farmacocinética , Compuestos de Espiro/efectos adversos , Compuestos de Espiro/farmacocinética , Distribución Tisular , Nociceptina
19.
J Nucl Med ; 52(10): 1638-45, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21880575

RESUMEN

UNLABELLED: Our laboratory developed (S)-3-(2'-fluoro-6',7'-dihydrospiro[piperidine-4,4'-thieno[3,2-c]pyran]-1-yl)-2-(2-fluorobenzyl)-N-methylpropanamide ((11)C-NOP-1A), a new radioligand for the nociceptin/orphanin FQ peptide (NOP) receptor, with high affinity (K(i), 0.15 nM) and appropriate lipophilicity (measured logD, 3.4) for PET brain imaging. Here, we assessed the utility of (11)C-NOP-1A for quantifying NOP receptors in the monkey brain and estimated the radiation safety profile of this radioligand based on its biodistribution in monkeys. METHODS: Baseline and blocking PET scans were acquired from head to thigh for 3 rhesus monkeys for approximately 120 min after (11)C-NOP-1A injection. These 6 PET scans were used to quantify NOP receptors in the brain and to estimate radiation exposure to organs of the body. In the blocked scans, a selective nonradioactive NOP receptor antagonist (SB-612111; 1 mg/kg intravenously) was administered before (11)C-NOP-1A. In all scans, arterial blood was sampled to measure the parent radioligand (11)C-NOP-1A. Distribution volume (V(T); a measure of receptor density) was calculated with a compartment model using brain and arterial plasma data. Radiation-absorbed doses were calculated using the MIRD Committee scheme. RESULTS: After (11)C-NOP-1A injection, peak uptake of radioactivity in the brain had a high concentration (∼5 standardized uptake value), occurred early (∼12 min), and thereafter washed out quickly. V(T) (mL · cm(-3)) was highest in the neocortex (∼20) and lowest in hypothalamus and cerebellum (∼13). SB-612111 blocked approximately 50%-70% of uptake and reduced V(T) in all brain regions to approximately 7 mL · cm(-3). Distribution was well identified within 60 min of injection and stable for the remaining 60 min, consistent with only parent radioligand and not radiometabolites entering the brain. Whole-body scans confirmed that the brain had specific (i.e., displaceable) binding but could not detect specific binding in peripheral organs. The effective dose for humans estimated from the baseline scans in monkeys was 5.0 µSv/MBq. CONCLUSION: (11)C-NOP-1A is a useful radioligand for quantifying NOP receptors in the monkey brain, and its radiation dose is similar to that of other (11)C-labeled ligands for neuroreceptors. (11)C-NOP-1A appears to be a promising candidate for measuring NOP receptors in the human brain.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes , Tomografía de Emisión de Positrones/métodos , Receptores Opioides/metabolismo , Compuestos de Espiro , Imagen de Cuerpo Entero/métodos , Animales , Radioisótopos de Carbono , Cicloheptanos/administración & dosificación , Humanos , Macaca mulatta , Masculino , Antagonistas de Narcóticos , Piperidinas/administración & dosificación , Ensayo de Unión Radioligante , Radiofármacos , Receptores Opioides/sangre , Receptor de Nociceptina
20.
J Med Chem ; 54(1): 366-73, 2011 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-21133364

RESUMEN

A novel series of N(1)-methyl-(2-phenylindol-3-yl)glyoxylamides, 19-31, designed in accordance with our previously reported pharmacophore/topological model, showed high affinity for the 18 kDa translocator protein (TSPO) and paved the way for developing a new radiolabeled probe. Thus ligand 31, N,N-di-n-propyl-(N(1)-methyl-2-(4'-nitrophenyl)indol-3-yl)glyoxylamide, featuring the best combination of affinity and lipophilicity, was labeled with carbon-11 for evaluation with positron emission tomography (PET) in monkey. After intravenous injection, [(11)C]31 entered brain to give a high proportion of TSPO-specific binding. These findings augur well for the future application of [(11)C]31 in humans. Consequently, the binding of 31 to human TSPO was tested on samples of brain membranes from deceased subjects who through ethically approved in vitro study had previously been established to be high-affinity binders (HABs), mixed-affinity binders (MABs), or low-affinity binders (LABs) for the known TSPO ligand, PBR28 (2). 31 showed high affinity for HABs, MABs, and LABs. In conclusion, [(11)C]31 represents a promising new chemotype for developing novel TSPO radioligands as biomarkers of neuroinflammation.


Asunto(s)
Amidas/síntesis química , Indoles/síntesis química , Radiofármacos/síntesis química , Receptores de GABA/metabolismo , Amidas/química , Amidas/farmacocinética , Animales , Unión Competitiva , Encéfalo/metabolismo , Radioisótopos de Carbono , Humanos , Técnicas In Vitro , Indoles/química , Indoles/farmacocinética , Riñón/metabolismo , Ligandos , Macaca mulatta , Tomografía de Emisión de Positrones , Ensayo de Unión Radioligante , Radiofármacos/química , Radiofármacos/farmacocinética , Ratas , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...