Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; 4(4): 101007, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37030295

RESUMEN

Pancreatic ductal adenocarcinomas (PDACs) frequently harbor KRAS mutations. Although MEK inhibitors represent a plausible therapeutic option, most PDACs are innately resistant to these agents. Here, we identify a critical adaptive response that mediates resistance. Specifically, we show that MEK inhibitors upregulate the anti-apoptotic protein Mcl-1 by triggering an association with its deubiquitinase, USP9X, resulting in acute Mcl-1 stabilization and protection from apoptosis. Notably, these findings contrast the canonical positive regulation of Mcl-1 by RAS/ERK. We further show that Mcl-1 inhibitors and cyclin-dependent kinase (CDK) inhibitors, which suppress Mcl-1 transcription, prevent this protective response and induce tumor regression when combined with MEK inhibitors. Finally, we identify USP9X as an additional potential therapeutic target. Together, these studies (1) demonstrate that USP9X regulates a critical mechanism of resistance in PDAC, (2) reveal an unexpected mechanism of Mcl-1 regulation in response to RAS pathway suppression, and (3) provide multiple distinct promising therapeutic strategies for this deadly malignancy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
2.
Cancer Res ; 83(11): 1800-1814, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-36939385

RESUMEN

The DAB2IP tumor suppressor encodes a RAS GTPase-activating protein. Accordingly, DAB2IP has been shown to be mutated or suppressed in tumor types that typically lack RAS mutations. However, here we report that DAB2IP is mutated or selectively silenced in the vast majority of KRAS and BRAF mutant colorectal cancers. In this setting, DAB2IP loss promoted tumor development by activating wild-type H- and N-RAS proteins, which was surprisingly required to achieve robust activation of RAS effector pathways in KRAS-mutant tumors. DAB2IP loss also triggered production of inflammatory mediators and the recruitment of protumorigenic macrophages in vivo. Importantly, tumor growth was suppressed by depleting macrophages or inhibiting cytokine/inflammatory mediator expression with a JAK/TBK1 inhibitor. In human tumors, DAB2IP was lost at early stages of tumor development, and its depletion was associated with an enrichment of macrophage and inflammatory signatures. Together, these findings demonstrate that DAB2IP restrains the activation of the RAS pathway and inflammatory cascades in the colon and that its loss represents a common and unappreciated mechanism for amplifying these two critical oncogenic signals in colorectal cancer. SIGNIFICANCE: DAB2IP is lost in early-stage tumors, which amplifies RAS signaling, triggers inflammatory mediators, and recruits macrophages in KRAS-mutant colon cancers.


Asunto(s)
Neoplasias del Colon , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Genes Supresores de Tumor , Neoplasias del Colon/genética , Transducción de Señal , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo , Línea Celular Tumoral
3.
J Biol Chem ; 292(28): 11727-11739, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28546431

RESUMEN

The mitochondrial network is a major site of ATP production through the coupled integration of the electron transport chain (ETC) with oxidative phosphorylation. In melanoma arising from the V600E mutation in the kinase v-RAF murine sarcoma viral oncogene homolog B (BRAFV600E), oncogenic signaling enhances glucose-dependent metabolism while reducing mitochondrial ATP production. Likewise, when BRAFV600E is pharmacologically inhibited by targeted therapies (e.g. PLX-4032/vemurafenib), glucose metabolism is reduced, and cells increase mitochondrial ATP production to sustain survival. Therefore, collateral inhibition of oncogenic signaling and mitochondrial respiration may help enhance the therapeutic benefit of targeted therapies. Honokiol (HKL) is a well tolerated small molecule that disrupts mitochondrial function; however, its underlying mechanisms and potential utility with targeted anticancer therapies remain unknown. Using wild-type BRAF and BRAFV600E melanoma model systems, we demonstrate here that HKL administration rapidly reduces mitochondrial respiration by broadly inhibiting ETC complexes I, II, and V, resulting in decreased ATP levels. The subsequent energetic crisis induced two cellular responses involving cyclin-dependent kinases (CDKs). First, loss of CDK1-mediated phosphorylation of the mitochondrial division GTPase dynamin-related protein 1 promoted mitochondrial fusion, thus coupling mitochondrial energetic status and morphology. Second, HKL decreased CDK2 activity, leading to G1 cell cycle arrest. Importantly, although pharmacological inhibition of oncogenic MAPK signaling increased ETC activity, co-treatment with HKL ablated this response and vastly enhanced the rate of apoptosis. Collectively, these findings integrate HKL action with mitochondrial respiration and shape and substantiate a pro-survival role of mitochondrial function in melanoma cells after oncogenic MAPK inhibition.


Asunto(s)
Apoptosis/efectos de los fármacos , Compuestos de Bifenilo/farmacología , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Complejo II de Transporte de Electrones/antagonistas & inhibidores , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Lignanos/farmacología , Mitocondrias/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Adenosina Trifosfato/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Antineoplásicos Fitogénicos/farmacología , Proteína Quinasa CDC2 , Línea Celular Tumoral , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Fase G1/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/enzimología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo , Desacopladores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...