Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Cereb Blood Flow Metab ; 44(1): 131-141, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37728659

RESUMEN

Clinically normal females exhibit higher 18F-flortaucipir (FTP)-PET signal than males across the cortex. However, these sex differences may be explained by neuroimaging idiosyncrasies such as off-target extracerebral tracer retention or partial volume effects (PVEs). 343 clinically normal participants (female = 58%; mean[SD]=73.8[8.5] years) and 55 patients with mild cognitive impairment (female = 38%; mean[SD] = 76.9[7.3] years) underwent cross-sectional FTP-PET. We parcellated extracerebral FreeSurfer areas based on proximity to cortical ROIs. Sex differences in cortical tau were then estimated after accounting for local extracerebral retention. We simulated PVE by convolving group-level standardized uptake value ratio means in each ROI with 6 mm Gaussian kernels and compared the sexes across ROIs post-smoothing. Widespread sex differences in extracerebral retention were observed. Although attenuating sex differences in cortical tau-PET signal, covarying for extracerebral retention did not impact the largest sex differences in tau-PET signal. Differences in PVE were observed in both female and male directions with no clear sex-specific bias. Our findings suggest that sex differences in FTP are not solely attributed to off-target extracerebral retention or PVE, consistent with the notion that sex differences in medial temporal and neocortical tau are biologically driven. Future work should investigate sex differences in regional cerebral blood flow kinetics and longitudinal tau-PET.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Masculino , Femenino , Proteínas tau/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Caracteres Sexuales , Estudios Transversales , Tomografía de Emisión de Positrones/métodos , Carbolinas/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Enfermedad de Alzheimer/metabolismo
2.
Commun Med (Lond) ; 3(1): 106, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528163

RESUMEN

INTRODUCTION: Non-invasive diffusion-weighted imaging (DWI) to assess brain microstructural changes via cortical mean diffusivity (cMD) has been shown to be cross-sectionally associated with tau in cognitively normal older adults, suggesting that it might be an early marker of neuronal injury. Here, we investigated how regional cortical microstructural changes measured by cMD are related to the longitudinal accumulation of regional tau as well as to episodic memory decline in cognitively normal individuals harboring amyloid pathology. METHODS: 122 cognitively normal participants from the Harvard Aging Brain Study underwent DWI, T1w-MRI, amyloid and tau PET imaging, and Logical Memory Delayed Recall (LMDR) assessments. We assessed whether the interaction of baseline amyloid status and cMD (in entorhinal and inferior-temporal cortices) was associated with longitudinal regional tau accumulation and with longitudinal LMDR using separate linear mixed-effects models. RESULTS: We find a significant interaction effect of the amyloid status and baseline cMD in predicting longitudinal tau in the entorhinal cortex (p = 0.044) but not the inferior temporal lobe, such that greater baseline cMD values predicts the accumulation of entorhinal tau in amyloid-positive participants. Moreover, we find a significant interaction effect of the amyloid status and baseline cMD in the entorhinal cortex (but not inferior temporal cMD) in predicting longitudinal LMDR (p < 0.001), such that baseline entorhinal cMD predicts the episodic memory decline in amyloid-positive participants. CONCLUSIONS: The combination of amyloidosis and elevated cMD in the entorhinal cortex may help identify individuals at short-term risk of tau accumulation and Alzheimer's Disease-related episodic memory decline, suggesting utility in clinical trials.


People with Alzheimer's disease have problems with their memory and ability to acquire and process knowledge. Understanding the earliest brain changes leading to these problems helps identify those likely to develop Alzheimer's disease early in the disease process. This study used a marker that measures the mobility of water in the brain to investigate how these changes can predict development of a protein named tau and changes in people's memory. The participants showed no signs of memory impairment at the beginning of the study, but some developed memory decline during follow-up. Greater mobility of water in certain brain areas predicted future increase in tau and decline in memory, indicating this measure could be used to identify people at risk of developing Alzheimer's disease.

3.
Phys Med Biol ; 68(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37116511

RESUMEN

Objective. Positron emission tomography (PET) imaging of tau deposition using [18F]-MK6240 often involves long acquisitions in older subjects, many of whom exhibit dementia symptoms. The resulting unavoidable head motion can greatly degrade image quality. Motion increases the variability of PET quantitation for longitudinal studies across subjects, resulting in larger sample sizes in clinical trials of Alzheimer's disease (AD) treatment.Approach. After using an ultra-short frame-by-frame motion detection method based on the list-mode data, we applied an event-by-event list-mode reconstruction to generate the motion-corrected images from 139 scans acquired in 65 subjects. This approach was initially validated in two phantoms experiments against optical tracking data. We developed a motion metric based on the average voxel displacement in the brain to quantify the level of motion in each scan and consequently evaluate the effect of motion correction on images from studies with substantial motion. We estimated the rate of tau accumulation in longitudinal studies (51 subjects) by calculating the difference in the ratio of standard uptake values in key brain regions for AD. We compared the regions' standard deviations across subjects from motion and non-motion-corrected images.Main results. Individually, 14% of the scans exhibited notable motion quantified by the proposed motion metric, affecting 48% of the longitudinal datasets with three time points and 25% of all subjects. Motion correction decreased the blurring in images from scans with notable motion and improved the accuracy in quantitative measures. Motion correction reduced the standard deviation of the rate of tau accumulation by -49%, -24%, -18%, and -16% in the entorhinal, inferior temporal, precuneus, and amygdala regions, respectively.Significance. The list-mode-based motion correction method is capable of correcting both fast and slow motion during brain PET scans. It leads to improved brain PET quantitation, which is crucial for imaging AD.


Asunto(s)
Enfermedad de Alzheimer , Procesamiento de Imagen Asistido por Computador , Humanos , Anciano , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía de Emisión de Positrones/métodos , Movimiento (Física) , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen
4.
J Nucl Med ; 64(6): 968-975, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36997330

RESUMEN

6-(fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]MK6240) has high affinity and selectivity for hyperphosphorylated tau and readily crosses the blood-brain barrier. This study investigated whether the early phase of [18F]MK6240 can be used to provide a surrogate index of cerebral perfusion. Methods: Forty-nine subjects who were cognitively normal (CN), had mild cognitive impairment (MCI), or had Alzheimer's disease (AD) underwent paired dynamic [18F]MK6240 and [11C]Pittsburgh compound B (PiB) PET, as well as structural MRI to obtain anatomic information. Arterial blood samples were collected in a subset of 24 subjects for [18F]MK6240 scans to derive metabolite-corrected arterial input functions. Regional time-activity curves were extracted using atlases available in the Montreal Neurologic Institute template space and using FreeSurfer. The early phase of brain time-activity curves was analyzed using a 1-tissue-compartment model to obtain a robust estimate of the rate of transfer from plasma to brain tissue, K 1 (mL⋅cm-3⋅min-1), and the simplified reference tissue model 2 was investigated for noninvasive estimation of the relative delivery rate, R 1 (unitless). A head-to-head comparison with R 1 derived from [11C]PiB scans was performed. Grouped differences in R 1 were evaluated among CN, MCI, and AD subjects. Results: Regional K 1 values suggested a relatively high extraction fraction. R 1 estimated noninvasively from simplified reference tissue model 2 agreed well with R 1 calculated indirectly from the blood-based compartment modeling (r = 0.99; mean difference, 0.024 ± 0.027), suggesting that robust estimates were obtained. R 1 measurements obtained with [18F]MK6240 correlated strongly and overall agreed well with those obtained from [11C]PiB (r = 0.93; mean difference, -0.001 ± 0.068). Statistically significant differences were observed in regional R 1 measurements among CN, MCI, and AD subjects, notably in the temporal and parietal cortices. Conclusion: Our results provide evidence that the early phase of [18F]MK6240 images may be used to derive a useful index of cerebral perfusion. The early and late phases of a [18F]MK6240 dynamic acquisition may thus offer complementary information about the pathophysiologic mechanisms of the disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Disfunción Cognitiva/diagnóstico por imagen , Compuestos de Anilina , Circulación Cerebrovascular
5.
J Cereb Blood Flow Metab ; 43(4): 581-594, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36420769

RESUMEN

[18F]MK-6240 meningeal/extracerebral off-target binding may impact tau quantification. We examined the kinetics and longitudinal changes of extracerebral and reference regions. [18F]MK-6240 PET was performed in 24 cognitively-normal and eight cognitively-impaired subjects, with arterial samples in 13 subjects. Follow-up scans at 6.1 ± 0.5 (n = 25) and 13.3 ± 0.9 (n = 16) months were acquired. Extracerebral and reference region (cerebellar gray matter (CerGM)-based, cerebral white matter (WM), pons) uptake were evaluated using standardized uptake values (SUV90-110), spectral analysis, and distribution volume. Longitudinal changes in SUV90-110 were examined. The impact of reference region on target region outcomes, partial volume correction (PVC) and regional erosion were evaluated. Eroded WM and pons showed lower variability, lower extracerebral contamination, and lower longitudinal changes than CerGM-based regions. CerGM-based regions resulted larger cross-sectional effect sizes for group differentiation. Extracerebral signal was high in 50% of subjects and exhibited irreversible kinetics and nonsignificant longitudinal changes over one-year but was highly variable at subject-level. PVC resulted in higher variability in reference region uptake and longitudinal changes. Our results suggest that eroded CerGM may be preferred for cross-sectional, whilst eroded WM or pons may be preferred for longitudinal [18F]MK-6240 studies. For CerGM, erosion was necessary (preferred over PVC) to address the heterogenous nature of extracerebral signal.


Asunto(s)
Disfunción Cognitiva , Humanos , Estudios Transversales , Cinética , Tomografía de Emisión de Positrones/métodos , Estudios de Casos y Controles
6.
Ann Neurol ; 92(1): 11-22, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35471588

RESUMEN

OBJECTIVE: Women have a higher lifetime risk of Alzheimer's disease (AD) than men. Among cognitively normal (CN) older adults, women exhibit elevated tau positron emission tomography (PET) signal compared with men. We explored whether menopause exacerbates sex differences in tau deposition in middle-aged adults. METHODS: 328 CN participants from the Framingham Study (mean age = 57 years (±10 years), 161 women, of whom, 104 were post-menopausal) underwent tau and ß-amyloid (Aß)-PET neuroimaging. We examined global Aß-PET, and tau-PET signal in 5 regions identified a priori as demonstrating significant sex differences in older adults (in temporal, inferior parietal, middle frontal, and lateral occipital regions). We examined sex and menopause status-related differences in each region-of-interest, using linear regressions, as well as interactions with Aß and APOEε4 genotype. RESULTS: Women exhibited higher tau-PET signal (p < 0.002), and global Aß-PET (p = 0.010), than men in inferior parietal, rostral middle frontal, and lateral occipital regions. Compared with age-matched men, post-menopausal women showed significantly higher tau-PET signal in parieto-occipital regions (p < 0.0001). By contrast, no differences in tau-PET signal existed between pre-menopausal women and men. Aß-PET was not associated with menopausal status or age. Neither Aß-PET nor APOEε4 status moderated sex or menopause associations with tau-PET. INTERPRETATION: Clear divergence in tauopathy between the sexes are apparent approximately 20 years earlier than previously reported. Menopause status moderated sex differences in Aß and tau-PET burden, with tau first appearing post-menopause. Sex and menopause differences consistently appeared in middle frontal and parieto-occipital regions but were not moderated by Aß burden or APOEε4, suggesting that menopause-related tau vulnerability may be independent of AD-related pathways. ANN NEUROL 2022;92:11-22.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/metabolismo , Femenino , Humanos , Masculino , Menopausia , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos , Caracteres Sexuales , Proteínas tau/metabolismo
7.
J Alzheimers Dis ; 86(4): 1603-1609, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35213372

RESUMEN

The brainstem is among the first regions to accumulate Alzheimer's disease (AD)-related hyperphosphorylated tau pathology during aging. We aimed to examine associations between brainstem volume and neocortical amyloid-ß or tau pathology in 271 middle-aged clinically normal individuals of the Framingham Heart Study who underwent MRI and PET imaging. Lower volume of the medulla, pons, or midbrain was associated with greater neocortical amyloid burden. No associations were detected between brainstem volumes and tau deposition. Our results support the hypothesis that lower brainstem volumes are associated with initial AD-related processes and may signal preclinical AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Tronco Encefálico/patología , Humanos , Estudios Longitudinales , Persona de Mediana Edad , Proteínas tau/metabolismo
8.
Mol Psychiatry ; 26(12): 7813-7822, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34588623

RESUMEN

Noninvasive biomarkers of early neuronal injury may help identify cognitively normal individuals at risk of developing Alzheimer's disease (AD). A recent diffusion-weighted imaging (DWI) method allows assessing cortical microstructure via cortical mean diffusivity (cMD), suggested to be more sensitive than macrostructural neurodegeneration. Here, we aimed to investigate the association of cMD with amyloid-ß and tau pathology in older adults, and whether cMD predicts longitudinal cognitive decline, neurodegeneration and clinical progression. The study sample comprised n = 196 cognitively normal older adults (mean[SD] 72.5 [9.4] years; 114 women [58.2%]) from the Harvard Aging Brain Study. At baseline, all participants underwent structural MRI, DWI, 11C-Pittsburgh compound-B-PET, 18F-flortaucipir-PET imaging, and cognitive assessments. Longitudinal measures of Preclinical Alzheimer Cognitive Composite-5 were available for n = 186 individuals over 3.72 (1.96)-year follow-up. Prospective clinical follow-up was available for n = 163 individuals over 3.2 (1.7) years. Surface-based image analysis assessed vertex-wise relationships between cMD, global amyloid-ß, and entorhinal and inferior-temporal tau. Multivariable regression, mixed effects models and Cox proportional hazards regression assessed longitudinal cognition, brain structural changes and clinical progression. Tau, but not amyloid-ß, was positively associated with cMD in AD-vulnerable regions. Correcting for baseline demographics and cognition, increased cMD predicted steeper cognitive decline, which remained significant after correcting for amyloid-ß, thickness, and entorhinal tau; there was a synergistic interaction between cMD and both amyloid-ß and tau on cognitive slope. Regional cMD predicted hippocampal atrophy rate, independently from amyloid-ß, tau, and thickness. Elevated cMD predicted progression to mild cognitive impairment. Cortical microstructure is a noninvasive biomarker that independently predicts subsequent cognitive decline, neurodegeneration and clinical progression, suggesting utility in clinical trials.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Disfunción Cognitiva/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Estudios Prospectivos , Proteínas tau
9.
Alzheimers Res Ther ; 13(1): 118, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34172086

RESUMEN

INTRODUCTION: Impaired self-awareness of memory function, a.k.a. anosognosia, is a common symptom in Alzheimer's disease (AD); however, its pathological correlates remain unclear. Here, we investigated the impact of amyloid and tau on memory self-awareness. METHODS: Two hundred thirty-six clinically normal (N) and 102 impaired (I) participants from the ADNI cohort were included. Amyloid (global) and tau burden (in entorhinal and inferior temporal cortices) were assessed using positron emission tomography (PET). Self-awareness of memory was assessed using discrepancy indexes of subjective participant-informant ratings, as well as participant-objective scores of memory performance. Subjective and objective values were derived from the Everyday Cognition memory questionnaire and Logical Memory (delayed recall). RESULTS: Lower awareness (both methods) of memory function was associated with higher levels of pathology in the I group as compared to N. There was a significant effect of tauopathy, but not amyloidosis, on individual complaint, such that higher levels of tau associated with lower awareness. DISCUSSION: Impaired self-awareness appears progressively in the evolution of the disease related to AD biomarkers. Discordant subjective and objective measures may be important for clinical consideration.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Tauopatías , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/metabolismo , Humanos , Tomografía de Emisión de Positrones , Lóbulo Temporal/metabolismo , Proteínas tau/metabolismo
10.
Phys Med Biol ; 66(6): 06RM01, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33339012

RESUMEN

Positron emission tomography (PET) plays an increasingly important role in research and clinical applications, catalysed by remarkable technical advances and a growing appreciation of the need for reliable, sensitive biomarkers of human function in health and disease. Over the last 30 years, a large amount of the physics and engineering effort in PET has been motivated by the dominant clinical application during that period, oncology. This has led to important developments such as PET/CT, whole-body PET, 3D PET, accelerated statistical image reconstruction, and time-of-flight PET. Despite impressive improvements in image quality as a result of these advances, the emphasis on static, semi-quantitative 'hot spot' imaging for oncologic applications has meant that the capability of PET to quantify biologically relevant parameters based on tracer kinetics has not been fully exploited. More recent advances, such as PET/MR and total-body PET, have opened up the ability to address a vast range of new research questions, from which a future expansion of applications and radiotracers appears highly likely. Many of these new applications and tracers will, at least initially, require quantitative analyses that more fully exploit the exquisite sensitivity of PET and the tracer principle on which it is based. It is also expected that they will require more sophisticated quantitative analysis methods than those that are currently available. At the same time, artificial intelligence is revolutionizing data analysis and impacting the relationship between the statistical quality of the acquired data and the information we can extract from the data. In this roadmap, leaders of the key sub-disciplines of the field identify the challenges and opportunities to be addressed over the next ten years that will enable PET to realise its full quantitative potential, initially in research laboratories and, ultimately, in clinical practice.


Asunto(s)
Inteligencia Artificial , Neoplasias/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/tendencias , Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/tendencias , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional , Cinética , Oncología Médica/métodos , Oncología Médica/tendencias , Tomografía Computarizada por Tomografía de Emisión de Positrones/historia , Pronóstico , Radiofármacos , Biología de Sistemas , Tomografía Computarizada por Rayos X
11.
Brain Imaging Behav ; 13(2): 333-344, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29497982

RESUMEN

The two neuropathological hallmarks of Alzheimer's disease (AD) are amyloid-[Formula: see text] plaques and neurofibrillary tangles of tau protein. Fifteen years ago, Positron Emission Tomography (PET) with Pittsburgh Compound B (11C-PiB) enabled selective in-vivo visualization of amyloid-[Formula: see text] plaque deposits and has since provided valuable information about the role of amyloid-[Formula: see text] deposition in AD. The progression of tau deposition has been shown to be highly associated with neuronal loss, neurodegeneration, and cognitive decline. Until recently it was not possible to visualize tau deposition in-vivo, but several tau PET tracers are now available in different stages of clinical development. To date, no tau tracer has been approved by the Food and Drug Administration for use in the evaluation of AD or other tauopathies, despite very active research efforts. In this paper we review the recent developments in tau PET imaging with a focus on in-vivo findings in AD and discuss the challenges associated with tau tracer development, the status of development and validation of different tau tracers, and the clinical information these provide.


Asunto(s)
Tomografía de Emisión de Positrones/métodos , Radiofármacos , Proteínas tau/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Humanos
12.
Neuroimage ; 186: 446-454, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30458305

RESUMEN

INTRODUCTION: There is a growing need in clinical research domains for direct comparability between amyloid-beta (Aß) Positron Emission Tomography (PET) measures obtained via different radiotracers and processing methodologies. Previous efforts to provide a common measurement scale fail to account for non-linearities between measurement scales that can arise from these differences. We introduce a new application of distribution mapping, based on well established statistical orthodoxy, that we call Nonlinear Distribution Mapping (NoDiM). NoDiM uses cumulative distribution functions to derive mappings between Aß-PET measurements from different tracers and processing streams that align data based on their location in their respective distributions. METHODS: Utilizing large datasets of Florbetapir (FBP) from the Alzheimer's Disease Neuroimaging Initiative (n = 349 female (%) = 53) and Pittsburgh Compound B (PiB) from the Harvard Aging Brain Study (n = 305 female (%) = 59.3) and the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (n = 184 female (%) = 53.3), we fit explicit mathematical models of a mixture of two normal distributions, with parameter estimates from Gaussian Mixture Models, to each tracer's empirical data. We demonstrate the accuracy of these fits, and then show the ability of NoDiM to transform FBP measurements into PiB-like units. RESULTS: A mixture of two normal distributions fit both the FBP and PiB empirical data and provides a strong basis for derivation of a transfer function. Transforming Aß-PET data with NoDiM results in FBP and PiB distributions that are closely aligned throughout their entire range, while a linear transformation does not. Additionally the NoDiM transform better matches true positive and false positive profiles across tracers. DISCUSSION: The NoDiM transformation provides a useful alternative to the linear mapping advocated in the Centiloid project, and provides improved correspondence between measurements from different tracers across the range of observed values. This improved alignment enables disparate measures to be merged on to continuous scale, and better enables the use of uniform thresholds across tracers.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer/diagnóstico por imagen , Compuestos de Anilina , Encéfalo/diagnóstico por imagen , Glicoles de Etileno , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Teóricos , Neuroimagen/métodos , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Tiazoles , Anciano , Anciano de 80 o más Años , Conjuntos de Datos como Asunto , Femenino , Humanos , Masculino , Persona de Mediana Edad
13.
ACS Chem Neurosci ; 9(11): 2563-2571, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29719953

RESUMEN

Huntington's disease is a devastating neurodegenerative genetic disorder that causes progressive motor dysfunction, emotional disturbances, and cognitive impairment. Unfortunately, there is no treatment to cure or slow the progression of the disease. Neuroinflammation is one hallmark of Huntington's disease, and modulation of neuroinflammation has been suggested as a potential target for therapeutic intervention. The relationship between neuroinflammation markers and the disease pathology is still poorly understood. To improve our understanding of neuroinflammation in Huntington's disease, we measured translocator protein (TSPO) expression using 11C-PBR28 and simultaneous PET/MRI. Standardized-uptake-value ratios, normalized by whole brain uptake, were calculated for data acquired 60-90 min after radiotracer administration. We identified distinct patterns of regional neuroinflammation (as defined by TSPO overexpression relative to a control group) in the basal ganglia of Huntington's disease patients. These patterns were observed at the individual level in all patients, with region of interest analysis confirming significant differences between patients and the control group in the putamen and the pallidum. Additionally, we observed further distinct regional and subregional signatures, which may provide insights into phenotypical variability. For example, in certain Huntington's disease patients, we observed in vivo elevation of the level of TSPO binding in subnuclei in the thalamus and brainstem that have been previously associated with visual function, motor function, and motor coordination. Our main result is an objective score, based solely on 11C-PBR28 measurements, that correlates well with measurements of brain atrophy. We conclude that PET/MR imaging using 11C-PBR28 provides a high signal-to-background ratio and has the potential to be used to assess Huntington's disease progression. Our results suggest 11C-PBR28 might prove useful in clinical trials evaluating therapies targeting neuroinflammation.


Asunto(s)
Encéfalo/diagnóstico por imagen , Enfermedad de Huntington/diagnóstico por imagen , Acetamidas , Anciano , Astrocitos/metabolismo , Encéfalo/metabolismo , Radioisótopos de Carbono , Estudios de Casos y Controles , Progresión de la Enfermedad , Femenino , Globo Pálido/diagnóstico por imagen , Globo Pálido/metabolismo , Humanos , Enfermedad de Huntington/inmunología , Enfermedad de Huntington/metabolismo , Inflamación , Imagen por Resonancia Magnética , Masculino , Microglía/metabolismo , Persona de Mediana Edad , Imagen Multimodal , Tomografía de Emisión de Positrones , Putamen/diagnóstico por imagen , Putamen/metabolismo , Piridinas , Radiofármacos , Receptores de GABA/metabolismo , Núcleos Talámicos/diagnóstico por imagen , Núcleos Talámicos/metabolismo
14.
J Oncol ; 2012: 605076, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23049553

RESUMEN

Positron emission mammography (PEM) cameras are novel-dedicated PET systems optimized to image the breast. For these cameras it is essential to achieve an optimum trade-off between sensitivity and spatial resolution and therefore the main challenge for the novel cameras is to improve the sensitivity without degrading the spatial resolution. We carry out an analytical study of the effect of the different detector geometries on the photon sensitivity and the angle of incidence of the detected photons which is related to the DOI effect and therefore to the intrinsic spatial resolution. To this end, dual head detectors were compared to box and different polygon-detector configurations. Our results showed that higher sensitivity and uniformity were found for box and polygon-detector configurations compared to dual-head cameras. Thus, the optimal configuration in terms of sensitivity is a PEM scanner based on a polygon of twelve (dodecagon) or more detectors. We have shown that this configuration is clearly superior to dual-head detectors and slightly higher than box, octagon, and hexagon detectors. Nevertheless, DOI effects are increased for this configuration compared to dual head and box scanners and therefore an accurate compensation for this effect is required.

15.
Eur J Nucl Med Mol Imaging ; 39(11): 1756-66, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22890801

RESUMEN

PURPOSE: Clinical PET/MR acquisition protocols entail the use of MR contrast agents (MRCA) that could potentially affect PET quantification following MR-based attenuation correction (AC). We assessed the effect of oral and intravenous (IV) MRCA on PET quantification in PET/MR imaging. METHODS: We employed two MRCA: Lumirem (oral) and Gadovist (IV). First, we determined their reference PET attenuation values using a PET transmission scan (ECAT-EXACT HR+, Siemens) and a CT scan (PET/CT Biograph 16 HI-REZ, Siemens). Second, we evaluated the attenuation of PET signals in the presence of MRCA. Phantoms were filled with clinically relevant concentrations of MRCA in a background of water and (18)F-fluoride, and imaged using a PET/CT scanner (Biograph 16 HI-REZ, Siemens) and a PET/MR scanner (Biograph mMR, Siemens). Third, we investigated the effect of clinically relevant volumes of MRCA on MR-based AC using human pilot data: a patient study employing Gadovist (IV) and a volunteer study employing two different oral MRCA (Lumirem and pineapple juice). MR-based attenuation maps were calculated following Dixon-based fat-water segmentation and an external atlas-based and pattern recognition (AT&PR) algorithm. RESULTS: IV and oral MRCA in clinically relevant concentrations were found to have PET attenuation values similar to those of water. The phantom experiments showed that under clinical conditions IV and oral MRCA did not yield additional attenuation of PET emission signals. Patient scans showed that PET attenuation maps are not biased after the administration of IV MRCA but may be biased, however, after ingestion of iron oxide-based oral MRCA when segmentation-based AC algorithms are used. Alternative AC algorithms, such as AT&PR, or alternative oral contrast agents, such as pineapple juice, can yield unbiased attenuation maps. CONCLUSION: In clinical PET/MR scenarios MRCA are not expected to lead to markedly increased attenuation of the PET emission signals. MR-based attenuation maps may be biased by oral iron oxide-based MRCA unless advanced AC algorithms are used.


Asunto(s)
Medios de Contraste/administración & dosificación , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Imagen de Cuerpo Entero , Administración Intravenosa , Administración Oral , Fluorodesoxiglucosa F18 , Humanos , Nanopartículas de Magnetita/administración & dosificación , Compuestos Organometálicos/administración & dosificación , Siloxanos/administración & dosificación
16.
J Nucl Med ; 51(2): 237-45, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20080882

RESUMEN

The introduction of fast scintillators with good stopping power for 511-keV photons has renewed interest in time-of-flight (TOF) PET. The ability to measure the difference between the arrival times of a pair of photons originating from positron annihilation improves the image signal-to-noise ratio (SNR). The level of improvement depends upon the extent and distribution of the positron activity and the time resolution of the PET scanner. While specific estimates can be made for phantom imaging, the impact of TOF PET is more difficult to quantify in clinical situations. The results presented here quantify the benefit of TOF in a challenging phantom experiment and then assess both qualitatively and quantitatively the impact of incorporating TOF information into the reconstruction of clinical studies. A clear correlation between patient body mass index and gain in SNR was observed in this study involving 100 oncology patient studies, with a gain due to TOF ranging from 1.1 to 1.8, which is consistent with the 590-ps time resolution of the TOF PET scanner. The visual comparison of TOF and non-TOF images performed by two nuclear medicine physicians confirmed the advantages of incorporating TOF into the reconstruction, advantages that include better definition of small lesions and image details, improved uniformity, and noise reduction.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Índice de Masa Corporal , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Fantasmas de Imagen , Tomografía de Emisión de Positrones/estadística & datos numéricos , Tomografía Computarizada por Rayos X/estadística & datos numéricos
17.
J Nucl Med ; 50(8): 1315-23, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19617317

RESUMEN

UNLABELLED: Time-of-flight (TOF) PET uses very fast detectors to improve localization of events along coincidence lines-of-response. This information is then utilized to improve the tomographic reconstruction. This work evaluates the effect of TOF upon an observer's performance for detecting and localizing focal warm lesions in noisy PET images. METHODS: An advanced anthropomorphic lesion-detection phantom was scanned 12 times over 3 days on a prototype TOF PET/CT scanner (Siemens Medical Solutions). The phantom was devised to mimic whole-body oncologic (18)F-FDG PET imaging, and a number of spheric lesions (diameters 6-16 mm) were distributed throughout the phantom. The data were reconstructed with the baseline line-of-response ordered-subsets expectation-maximization algorithm, with the baseline algorithm plus point spread function model (PSF), baseline plus TOF, and with both PSF+TOF. The lesion-detection performance of each reconstruction was compared and ranked using localization receiver operating characteristics (LROC) analysis with both human and numeric observers. The phantom results were then subjectively compared to 2 illustrative patient scans reconstructed with PSF and with PSF+TOF. RESULTS: Inclusion of TOF information provides a significant improvement in the area under the LROC curve compared to the baseline algorithm without TOF data (P = 0.002), providing a degree of improvement similar to that obtained with the PSF model. Use of both PSF+TOF together provided a cumulative benefit in lesion-detection performance, significantly outperforming either PSF or TOF alone (P < 0.002). Example patient images reflected the same image characteristics that gave rise to improved performance in the phantom data. CONCLUSION: Time-of-flight PET provides a significant improvement in observer performance for detecting focal warm lesions in a noisy background. These improvements in image quality can be expected to improve performance for the clinical tasks of detecting lesions and staging disease. Further study in a large clinical population is warranted to assess the benefit of TOF for various patient sizes and count levels, and to demonstrate effective performance in the clinical environment.


Asunto(s)
Algoritmos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Imagen de Cuerpo Entero/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...