Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 924: 171489, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38453074

RESUMEN

In semi-arid sub-Saharan Africa, climate change and the intensification of human activities have altered the hydrological balance and modified the recurrence of extreme hydroclimatic events, such as droughts and floods. The geomorphological heterogeneity of river catchments across the region, the variable human pressure, and the lack of continuous hydroclimatic data preclude the definition of proper mitigation strategies, with a direct effect on the sustainability of rural communities. Here, for the first time in Africa, we characterize hydrological extreme events using a multidisciplinary approach that includes sedimentary data from dams. We focus on the Limpopo River basin to evaluate which factors control flood magnitude since the 1970. Extreme flood events were identified across the basin in 1988-89, 1995-96, 1999-2000, 2003-04, 2010-11, 2013-14 and 2016-17. The statistical analysis of sedimentary flood records revealed a dramatic increase in their magnitude over the studied period. A positive correlation between maximum river flow and antecedent prolonged drought conditions was found in South Africa and Mozambique. Most importantly, since 1980, we observed the likely decoupling of extreme floods from the magnitude of La Niña events, suggesting that the natural interannual variability driven by El Niño-Southern Oscillation (ENSO) has been disrupted by climate changes and human activities.

2.
Sci Total Environ ; 897: 165379, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423277

RESUMEN

Dreissena polymorpha is a bivalve promising for biomonitoring in freshwater ecosystems thanks to its abundance and high filtration activity allowing rapid uptake of toxicants and identification of their negative effects. Nonetheless, we still lack knowledge on its molecular responses to stress under realistic scenario, e.g. multi-contamination. Carbamazepine (CBZ) and Hg are ubiquitous pollutants sharing molecular toxicity pathways, e.g. oxidative stress. A previous study in zebra mussels showed their co-exposure to cause more alterations than single exposures, but molecular toxicity pathways remained unidentified. D. polymorpha was exposed 24 h (T24) and 72 h (T72) to CBZ (6.1 ± 0.1 µg L-1), MeHg (430 ± 10 ng L-1) and the co-exposure (6.1 ± 0.1 µg L-1CBZ and 500 ± 10 ng L-1 MeHg) at concentrations representative of polluted areas (~10× EQS). RedOx system at the gene and enzyme level, the proteome and the metabolome were compared. The co-exposure resulted in 108 differential abundant proteins (DAPs), as well as 9 and 10 modulated metabolites at T24 and T72, respectively. The co-exposure specifically modulated DAPs and metabolites involved in neurotransmission, e.g. dopaminergic synapse and GABA. CBZ specifically modulated 46 DAPs involved in calcium signaling pathways and 7 amino acids at T24. MeHg specifically modulated 55 DAPs involved in the cytoskeleton remodeling and hypoxia-induced factor 1 pathway, without altering the metabolome. Single and co-exposures commonly modulated proteins and metabolites involved in energy and amino acid metabolisms, response to stress and development. Concomitantly, lipid peroxidation and antioxidant activities were unchanged, supporting that D. polymorpha tolerated experimental conditions. The co-exposure was confirmed to cause more alterations than single exposures. This was attributed to the combined toxicity of CBZ and MeHg. Altogether, this study underlined the necessity to better characterize molecular toxicity pathways of multi-contamination that are not predictable on responses to single exposures, to better anticipate adverse effects in biota and improve risk assessment.


Asunto(s)
Dreissena , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Masculino , Compuestos de Metilmercurio/toxicidad , Compuestos de Metilmercurio/metabolismo , Bioacumulación , Ecosistema , Carbamazepina/toxicidad , Carbamazepina/metabolismo , Contaminantes Químicos del Agua/análisis
3.
Environ Sci Process Impacts ; 25(4): 850-869, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-36924114

RESUMEN

Arsenic speciation was followed monthly along the spring productivity period (January-June 2021) in the Petit Lac (76 m deep) and in April and June 2021 in the Grand Lac (309.7 m deep) of Lake Geneva (Switzerland/France). Lake Geneva is presently an oligo-mesotrophic lake, and As-unpolluted. The water column never becomes anoxic but the oxygen saturation at the bottom of the Grand Lac is now below 30% owing to lack of water column mixing since 2012. Thus, this lake offers excellent conditions to study As behaviour in an unpolluted, oxic freshwater body. The following 'dissolved' As species: iAs(III), iAs(III + V), MA(III), MA(III + V), DMA(III + V), and TMAO were analysed by HG-CT-ICP-MS/MS. Water column measurements were complemented with occasional sampling in the main rivers feeding the lake and in the interstitial waters of a sediment core. The presence of MA(III) and TMAO and the predominance of iAs(V) in lake and river samples has been confirmed as well as the key role of algae in the formation of organic species. While the total 'dissolved' As concentrations showed nearly vertical profiles in the Petit Lac, As concentrations steadily increase at deeper depths in the Grand Lac due to the lack of mixing and build up in bottom waters. The evaluation of 25 years of monthly data of 'dissolved' As concentrations showed no significant temporal trends between 1997 and 2021. The observed seasonal character of the 'dissolved' As along this period coincides with a lack of seasonality in As mass inventories, pointing to a seasonal internal cycling of As species in the water column with exchanges between the 'dissolved' and 'particulate' (i.e., algae) fractions.


Asunto(s)
Arsénico , Contaminantes Químicos del Agua , Arsénico/análisis , Lagos , Metilación , Suiza , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis , Agua/análisis , Oxidación-Reducción , Monitoreo del Ambiente
4.
Water Res ; 229: 119368, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459894

RESUMEN

Increased concentration of mercury, particularly methylmercury, in the environment is a worldwide concern because of its toxicity in severely exposed humans. Although the formation of methylmercury in oxic water columns has been previously suggested, there is no evidence of the presence of microorganisms able to perform this process, using the hgcAB gene pair (hgc+ microorganisms), in such environments. Here we show the prevalence of hgc+ microorganisms in sinking particles of the oxic water column of Lake Geneva (Switzerland and France) and its anoxic bottom sediments. Compared to anoxic sediments, sinking particles found in oxic waters exhibited relatively high proportion of hgc+genes taxonomically assigned to Firmicutes. In contrast hgc+members from Nitrospirae, Chloroflexota and PVC superphylum were prevalent in anoxic sediment while hgc+ Desulfobacterota were found in both environments. Altogether, the description of the diversity of putative mercury methylators in the oxic water column expand our understanding on MeHg formation in aquatic environments and at a global scale.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Humanos , Mercurio/análisis , Agua , Anaerobiosis , Metilación , Sedimentos Geológicos
5.
Chemosphere ; 299: 134306, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35337820

RESUMEN

Hg methylation in the oxic water column of marine environments has been linked to the presence of suspended and settling particles known as marine snow, which acts as a micro-niche for MeHg production. While marine snow has been thoroughly studied, its freshwater counterpart, lake snow, received less attention, even though few works have highlighted its ability to be a micro environment for Hg methylation in freshwater systems. Here we present new data of MeHg and THg concentrations in the lake snow of a deep peri-alpine lake (Lake Geneva, Switzerland-France). Particles were sampled from the lake and from its main tributaries using continuous flow filtration and continuous flow centrifugation, respectively. MeHg concentrations ranged from 0.48 ± 0.09 ng/g to 9.61 ± 0.67 ng/g in the lake particles, and from 0.30 ± 0.08 ng/g to 2.41 ± 0.14 ng/g in tributary particles. Our results suggest that lake snow is a likely micro-niche for Hg methylation, like marine snow, and that this methylation takes place inside the particles with a subsequent diffusion to the water column. Moreover, we propose a conceptual model to explain the MeHg behavior related to the lake snow along Lake Geneva water column and a mass balance model to estimate the time required to reach the steady state of MeHg in the water column. Our calculation indicates that the steady-state is reached after 37 days. This result is compatible with particles residence times from the literature on Lake Geneva. These particles forming the lake snow are probably a major entry point into the lake's food chain.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Lagos , Mercurio/análisis , Metilación , Agua , Contaminantes Químicos del Agua/análisis
6.
Environ Pollut ; 300: 118933, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35122922

RESUMEN

Carbamazepine (CBZ) and Hg are widespread and persistent micropollutants in aquatic environments. Both pollutants are known to trigger similar toxicity mechanisms, e.g. reactive oxygen species (ROS) production. Here, their effects were assessed in the zebra mussel Dreissena polymorpha, frequently used as a freshwater model in ecotoxicology and biomonitoring. Single and co-exposures to CBZ (3.9 µg L-1) and MeHg (280 ng L-1) were performed for 1 and 7 days. Metabolomics analyses evidenced that the co-exposure was the most disturbing after 7 days, reducing the amount of 25 metabolites involved in protein synthesis, energy metabolism, antioxidant response and osmoregulation, and significantly altering cells and organelles' structure supporting a reduction of functions of gills and digestive glands. CBZ alone after 7 days decreased the amount of α-aminobutyric acid and had a moderate effect on the structure of mitochondria in digestive glands. MeHg alone had no effect on mussels' metabolome, but caused a significant alteration of cells and organelles' structure in gills and digestive glands. Single exposures and the co-exposure increased antioxidant responses vs control in gills and digestive glands, without resulting in lipid peroxidation, suggesting an increased ROS production caused by both pollutants. Data globally supported that a higher number of hyperactive cells compensated cellular alterations in the digestive gland of mussels exposed to CBZ or MeHg alone, while CBZ + MeHg co-exposure overwhelmed this compensation after 7 days. Those effects were unpredictable based on cellular responses to CBZ and MeHg alone, highlighting the need to consider molecular toxicity pathways for a better anticipation of effects of pollutants in biota in complex environmental conditions.


Asunto(s)
Dreissena , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Carbamazepina/análisis , Carbamazepina/toxicidad , Dreissena/metabolismo , Branquias/metabolismo , Compuestos de Metilmercurio/metabolismo , Compuestos de Metilmercurio/toxicidad , Contaminantes Químicos del Agua/análisis
7.
Front Microbiol ; 12: 738629, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34733255

RESUMEN

Lake sediments are natural receptors for a wide range of anthropogenic contaminants including organic matter and toxicants such as trace metals, polycyclic aromatic hydrocarbons, polychlorinated biphenyls that accumulate over time. This contamination can impact benthic communities, including microorganisms which play a crucial role in biogeochemical cycling and food-webs. The present survey aimed at exploring whether anthropogenic contamination, at a large lake scale, can influence the diversity, structure and functions of microbial communities associated to surface sediment, as well as their genetic potential for resistance to metals and antibiotics. Changes in the characteristics of these communities were assessed in surface sediments collected in Lake Geneva from eight sampling sites in October 2017 and May 2018. These sampling sites were characterized by a large concentration range of metal and organic compound contamination. Variation between the two sampling periods were very limited for all sampling sites and measured microbial parameters. In contrast, spatial variations were observed, with two sites being distinct from each other, and from the other six sites. Benthic communities from the most contaminated sampling site (Vidy Bay, near the city of Lausanne) were characterized by the lowest bacterial and archaeal diversity, a distinct community composition, the highest abundance of antibiotic resistance genes and functional (respiration, denitrification, methanogenesis, phosphatase, and beta-glucosidase) activity levels. The second sampling site which is highly influenced by inputs from the Rhône River, exhibited low levels of diversity, a distinct community composition, high abundance of antibiotic resistance genes and the highest bacterial abundance. Overall, our results suggest that local anthropogenic contamination, including organic matter and toxicants, is a major driver of the diversity and functioning of sediment-microbial communities in Lake Geneva. This highlights the need to consider benthic microbial communities and a suite of complementary ecotoxicological endpoints for more effective environmental risk assessments of contaminants in lake sediments.

8.
Environ Sci Pollut Res Int ; 25(21): 21086-21096, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29770934

RESUMEN

Concentrations and fluxes of total and methylmercury were determined in surface sediments and associated with settling particles at two sites in Lake Geneva to evaluate the sources and dynamics of this toxic contaminant. Total mercury concentrations measured in settling particles were different throughout the seasons and were greatly influenced by the Rhone River particulate inputs. Total mercury concentrations closer to shore (NG2) ranged between 0.073 ± 0.001 and 0.27 ± 0.01 µg/g, and between 0.038 ± 0.001 and 0.214 ± 0.008 µg/g at a site deeper in the lake (NG3). Total mercury fluxes ranged between 0.144 ± 0.002 and 3.0 ± 0.1 µg/m2/day at NG2, and between 0.102 ± 0.008 and 1.32 ± 0.08 µg/m2/day at NG3. Combined results of concentrations and fluxes showed that total mercury concentrations in settling particles are related to the season and particle inputs from the Rhone River. Despite an observed decrease in total mercury fluxes from the coastal zone towards the open lake, NG3 (~ 3 km from the shoreline) was still affected by the coastal boundary, as compared to distal sites at the center of the lake. Thus, sediment focusing is not efficient enough to redistribute contaminant inputs originating from the coastal zones, to the lake center. Methylmercury concentrations in settling particles largely exceeded the concentrations found in sediments, and their fluxes did not show significant differences with relation to the distance from shore. The methylmercury found associated with settling particles would be related to the lake's internal production rather than the effect of transport from sediment resuspension.


Asunto(s)
Sedimentos Geológicos/análisis , Lagos/análisis , Compuestos de Metilmercurio/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Lagos/química , Mercurio/análisis , Ríos , Estaciones del Año , Suiza
9.
Environ Toxicol Chem ; 37(4): 983-992, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29150949

RESUMEN

Despite the consensus about the importance of chemical speciation in controlling the bioavailability and ecotoxicity of trace elements, detailed speciation studies during laboratory ecotoxicity testing remain scarce, contributing to uncertainty when extrapolating laboratory findings to real field situations in risk assessment. We characterized the speciation and ecotoxicological effects of chromium (CrIII and CrVI ) in the International Organization for Standardization (ISO) medium for algal ecotoxicity testing. Total and dissolved (< 0.22 µm) Cr concentrations showed little variability in media spiked with CrVI , whereas dissolved Cr concentration decreased by as much as 80% over a 72-h time period in medium amended with CrIII . Analyses by ion chromatography inductively coupled plasma mass spectrometry (IC-ICP-MS) highlighted the absence of redox interconversion between CrIII or CrVI both in the presence and absence of algal cells (Raphidocelis subcapitata). Furthermore, the concentration of ionic CrIII dropped below detection limits in less than 2 h with the corresponding formation of carbonate complexes and Cr hydroxides. Precipitation of CrIII in the form of colloidal particles of variable diameters was confirmed by nanoparticle (NP) tracking analysis, single particle ICP-MS, and single particle counting. In terms of time-weighted dissolved (< 0.22 µm) Cr concentration, CrIII was 4 to 10 times more toxic than CrVI . However, CrIII ecotoxicity could arise from interactions between free ionic CrIII and algae at the beginning of the test, from the presence of Cr-bearing NPs, or from a combination of the 2. Future ecotoxicological studies must pay more attention to Cr speciation to reliably compare the ecotoxicity of CrIII and CrVI . Environ Toxicol Chem 2018;37:983-992. © 2017 SETAC.


Asunto(s)
Cromo/análisis , Medición de Riesgo , Iones , Límite de Detección , Nanopartículas/análisis , Oxidación-Reducción , Tamaño de la Partícula , Estándares de Referencia , Factores de Tiempo
11.
Environ Sci Pollut Res Int ; 23(24): 25412-25426, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27696073

RESUMEN

Understanding the dynamics and fate of particle bound contaminants is important for mitigating potential environmental, economic and health impacts linked to their presence. Vidy Bay, Lake Geneva (Switzerland), is contaminated due to the outfall and overflow from the wastewater treatment plant of the City of Lausanne. This study was designed to investigate the fate of particle-bound contaminants with the goal of providing a more complete picture of contaminant pathways within the bay and their potential spread to the main basin. This goal was achieved by investigating the sediment transport dynamics, using sediment traps and radionuclide tracers, and ascertaining how local bottom-boundary hydrodynamic conditions (temperature, turbidity, current velocity and direction) influence these dynamics. Results of the study indicated that sedimentation rates and lateral advections increased vertically with proximity to the lakebed and laterally with proximity to shore, indicating the presence of sediment focusing in the bay. Hydrodynamic measurements showed the persistent influence of a gyre within the bay, extending down to the lake bed, while just outside of the bay circulation was influenced by the seasonal patterns of the main basin. Calculated mean displacement distances in the bay indicated that suspended particles can travel ∼3 km per month, which is 1.7 times the width of the Vidy Bay gyre. This results in a residence time of approximately 21 days for suspended particles, which is much greater than previously modelled results. The calculated mobility Shield parameter never exceeded the threshold shear stress needed for resuspension in deeper parts of the bay. In such, increased lateral advections to the bay are not likely due to local resuspension but rather external particle sources, such as main basin or shallow, littoral resuspensions. These external sources coupled with an increased residence time and decreased current velocity within the bay are the precipitating factors in sediment focusing. While the spread of contaminants from the bay may occur through the transport of fine suspended sediments in shallower zones of the bay (<60 m) by longshore littoral currents, results suggest that particle-bound contaminants are likely to remain within the bay.


Asunto(s)
Bahías , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/química , Hidrodinámica , Modelos Teóricos , Suiza , Temperatura , Aguas Residuales/química
12.
Environ Sci Technol ; 50(21): 11672-11679, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27670225

RESUMEN

As the methylation of inorganic mercury to neurotoxic methylmercury has been attributed to the activity of anaerobic bacteria, the formation of methylmercury in the oxic water column of marine ecosystems has puzzled scientists over the past years. Here we show for the first time that methylmercury can be produced in particles sinking through oxygenated water column of lakes. Total mercury and methylmercury concentrations were measured in the settling particles and in surface sediments of the largest freshwater lake in Western Europe (Lake Geneva). While total mercury concentration differences between sediments and settling particles were not significant, methylmercury concentrations were about ten-fold greater in settling particles. Methylmercury demethylation rate constants (kd) were of similar magnitude in both compartments. In contrast, mercury methylation rate constants (km) were one order of magnitude greater in settling particles. The net potential for methylmercury formation, assessed by the ratio between the two rate constants (km kd-1), was therefore up to ten fold greater in settling particles, denoting that in situ transformations likely contributed to the high methylmercury concentration found in settling particles. Mercury methylation was inhibited (∼80%) in settling particles amended with molybdate, demonstrating the prominent role of biological sulfate-reduction in the process.


Asunto(s)
Mercurio , Agua , Sedimentos Geológicos , Metilación , Compuestos de Metilmercurio , Contaminantes Químicos del Agua
13.
Environ Sci Pollut Res Int ; 23(22): 22542-22553, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27557957

RESUMEN

Mercury (Hg) pollution legacy of chlor-alkali plants will be an important issue in the next decades with the planned phase out of Hg-based electrodes by 2025 within the Minamata convention. In such a context, the present study aimed to examine the extent of Hg contamination in the reservoirs surrounding the Oltchim plant and to evaluate the possible improvement of the environmental quality since the closure of its chlor-alkali unit. This plant is the largest chlor-alkali plant in Romania, which partly switched to Hg-free technology in 1999 and definitely stopped the use of Hg electrolysis in May 2012. Total Hg (THg) and methylmercury (CH3Hg) concentrations were found to decrease in the surface waters and sediments of the reservoirs receiving the effluents of the chlor-alkali platform since the closure of Hg units. Hence, calculated risk quotients (RQ) indicated no adverse effect of Hg for aquatic organisms from the ambient water exposure. RQ of Hg in sediments were mostly all higher than 1, showing important risks for benthic organisms. However, ecotoxicity testing of water and sediments suggest possible impact of other contaminants and their mixtures. Hg hotspots were found in soils around the platform with RQ values much higher than 1. Finally, THg and CH3Hg concentrations in fish were below the food safety limit set by the WHO, which contrasts with previous measurements made in 2007 revealing that 92 % of the studied fish were of high risk of consumption. Discontinuing the use of Hg electrodes greatly improved the surrounding environment of chlor-alkali plants within the following years and led to the decrease environmental exposure to Hg through fish consumption. However, sediment and soil still remained highly contaminated and problematic for the river reservoir management. The results of this ecological risk assessment study have important implications for the evaluation of the benefits as well as limits of the Minamata Convention implementation.


Asunto(s)
Monitoreo del Ambiente , Mercurio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Álcalis , Animales , Organismos Acuáticos , Ingestión de Alimentos , Exposición a Riesgos Ambientales , Peces , Sedimentos Geológicos , Humanos , Concentración de Iones de Hidrógeno , Compuestos de Metilmercurio/toxicidad , Ríos , Rumanía , Suelo/química , Contaminantes Químicos del Agua/análisis
14.
Environ Sci Pollut Res Int ; 23(11): 10529-10541, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26662302

RESUMEN

Chlor-alkali plants using mercury (Hg) cell technology are acute point sources of Hg pollution in the aquatic environment. While there have been recent efforts to reduce the use of Hg cells, some of the emitted Hg can be transformed to neurotoxic methylmercury (MeHg). Here, we aimed (i) to study the dispersion of Hg in four reservoirs located downstream of a chlor-alkali plant along the Olt River (Romania) and (ii) to track the activity of bacterial functional genes involved in Hg methylation. Total Hg (THg) concentrations in water and sediments decreased successively from the initial reservoir to downstream reservoirs. Suspended fine size particles and seston appeared to be responsible for the transport of THg into downstream reservoirs, while macrophytes reflected the local bioavailability of Hg. The concentration and proportion of MeHg were correlated with THg, but were not correlated with bacterial activity in sediments, while the abundance of hgcA transcript correlated with organic matter and Cl(-) concentration, indicating the importance of Hg bioavailability in sediments for Hg methylation. Our data clearly highlights the importance of considering Hg contamination as a legacy pollutant since there is a high risk of continued Hg accumulation in food webs long after Hg-cell phase out.


Asunto(s)
Monitoreo del Ambiente , Residuos Industriales , Mercurio/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Rumanía
15.
Chemosphere ; 90(9): 2444-52, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23200572

RESUMEN

The (137)Cs and (210)Pb dating of a 61-cm long sediment core retrieved from a drinking water reservoir (Lake Brêt) located in Switzerland revealed a linear and relatively high sedimentation rate (~1 cm year(-1)) over the last decades. The continuous centimeter scale measurement of physical (porewater and granulometry), organic (C(org), P, N, HI and OI indexes) and mineral (C(min) and lithogenic trace elements) parameters therefore enables reconstructing the environmental history of the lake and anthropogenic pollutant input (trace metals, DDT and PCBs) at high resolution. A major change in the physical properties of the lowermost sediments occurred following the artificial rise of the dam in 1922. After ca. 1940, there was a long-term up-core increase in organic matter deposition attributed to enhance primary production and anoxic bottom water conditions due to excessive nutrient input from a watershed predominantly used for agriculture that also received domestic effluents of two wastewater-treatment plants. This pattern contrasts with the terrigenous element input (Eu, Sc, Mg, Ti, Al, and Fe) which doubled after the rising of the dam but continuously decreased during the last 60 years. By comparison, the trace metals (Cu, Pb and Hg) presented a slight enrichment factor (EF) only during the second part of the 20th century. Although maximum EF Pb (>2) occurred synchronously with the use of leaded gasoline in Switzerland (between ca. 1947 and 1985) the Hg and Cu profiles exhibited a relatively similar trend than Pb during the 20th century, therefore excluding the alkyl-lead added to petrol as the dominant (atmospheric) source of lead input to Lake Brêt. Conversely, the Cu profile that did not follow the decrease registered in Pb and Hg during the last 10 years, suggests an additional source of Cu probably linked to the impact of agricultural activities in the area. In absence of heavy industries in the catchment, the atmospheric deposition of DDT and PCBs via surface runoff followed the historical emissions of POPs in Switzerland. Such result highlights the regional contamination of freshwater resources by the large-scale emission of toxic industrial chemicals in the 1960s and 1970s as well as the efficiency of the regulatory measures subsequently taken.


Asunto(s)
DDT/análisis , Agua Potable/química , Lagos/química , Bifenilos Policlorados/análisis , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Nitrógeno/análisis , Fósforo/análisis , Suiza , Contaminación Química del Agua/estadística & datos numéricos
16.
Environ Sci Technol ; 44(22): 8509-14, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20964354

RESUMEN

Colloidal transport has been shown to enhance the migration of plutonium in groundwater downstream from contaminated sites, but little is known about the adsorption of 9°Sr and plutonium onto colloids in the soil solution of natural soils. We sampled soil solutions using suction cups, and separated colloids using ultrafiltration to determine the distribution of ²³9Pu and 9°Sr between the truly dissolved fraction and the colloidal fraction of the solutions of three Alpine soils contaminated only by global fallout from the nuclear weapon tests. Plutonium was essentially found in the colloidal fraction (>80%) and probably associated with organic matter. A significant amount of colloidal 9°Sr was detected in organic-rich soil solutions. Our results suggest that binding to organic colloids in the soil solutions plays a key role with respect to the mobility of plutonium in natural alpine soils and, to a lesser extent, to the mobility of 9°Sr.


Asunto(s)
Coloides/química , Plutonio/química , Contaminantes Radiactivos del Suelo/química , Radioisótopos de Estroncio/química , Contaminantes Radiactivos del Agua/química , Adsorción , Calcio/análisis , Carbono/análisis , Hierro/análisis , Monitoreo de Radiación , Silicio/análisis , Suelo/química , Ultrafiltración
17.
Environ Sci Pollut Res Int ; 17(8): 1422-32, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20411344

RESUMEN

PURPOSE: Chlor-alkali plants are one of the most important point sources of mercury to aquatic environment. The problem of Hg contamination has been studied in a region, Rm Valcea (Romania), impacted by the wastewater discharge of a chlor-alkali plant. The purpose of the present study is to evaluate the current status of mercury pollution in the Babeni reservoir (Olt River) and the exposure of local population via fish consumption to mercury originating from the chlor-alkali plant. METHODS: Sediments were collected from Valcea, Govora and Babeni reservoirs. Grain size distribution, organic content and total mercury (THg) concentrations were analysed in sediments. Fish were purchased from local anglers, and the scalp hair was collected from volunteers. THg in sediment, fish and hair samples was determined using an atomic absorption spectrophotometer for Hg determination. Monomethylmercury (MMHg) was analysed in the muscle and liver tissues by species-specific isotope dilution and capillary gas chromatography hyphenated to inductively coupled plasma mass spectrometer. RESULTS: High mercury concentrations were found in the sediments and in fish from Babeni reservoir, with a median of 2.1 mg/kg (IQR = 3.2) in sediments and a mean value of 1.8 +/- 0.8 mg/kg_ww in fish muscle. MMHg concentrations in fish were well above the WHO guidelines for fish consumption. Local population consuming fish from the Babeni reservoir had THg concentrations in hair significantly higher than those consuming fish from upstream reservoirs and/or from the shops and reached a median value of 2.5 mg/kg (IQR = 3.6). CONCLUSIONS: The remnant pollution in the fish of this reservoir, and probably many other lakes and reservoirs receiving Hg polluted wastewater, represents a considerable health risk for the local fish consumers.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Peces/metabolismo , Contaminación de Alimentos , Mercurio/metabolismo , Contaminantes Químicos del Agua/metabolismo , Abastecimiento de Agua/análisis , Animales , Cloro/química , Ingestión de Alimentos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Monitoreo del Ambiente , Agua Dulce/química , Sedimentos Geológicos/química , Cabello/metabolismo , Humanos , Hígado/metabolismo , Mercurio/análisis , Músculos/metabolismo , Rumanía , Contaminantes Químicos del Agua/análisis
18.
Environ Sci Pollut Res Int ; 16 Suppl 1: S66-75, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18936996

RESUMEN

BACKGROUND, AIM AND SCOPE: Mercury (Hg) is a ubiquitous and hazardous contaminant in the aquatic environment showing a strong biomagnification effect along the food chain. The most common transfer path of Hg to humans is contaminated fish consumption. In severely exposed humans, Hg poisoning may lead to damage in the central nervous system. Thus, it is important to examine current and past contamination levels of Hg in aquatic milieu. The Olt River is the largest Romanian tributary of the Danube River. The use of Hg as an electrode in a chlor-alkali plant contributed to the contamination of the aquatic environment in the Rm Valcea region. The purpose of this study was to compare the current state of Hg contamination with the past contamination using a historical record obtained from a dated sediment core from one of the Olt River reservoirs (Babeni) located downstream from the chlor-alkali plant. To our knowledge, no published data on Hg contamination in this region are available. The Babeni Reservoir was selected for this study because it is situated downstream from the chlor-alkali plant, whilst the other reservoirs only retain the pollutants coming from the upstream part of the watershed. Preliminary analyses (unpublished) showed high Hg concentrations in the surface sediment of the Babeni Reservoir. One core was taken in the upstream Valcea Reservoir to provide a local background level of Hg concentrations in sediments. RESULTS AND DISCUSSION: Sediment texture was uniform in the cores from both reservoirs. Laminated sediment structure, without any obvious discontinuities, was observed. Hg concentrations in the sediment core from the Valcea Reservoir were low and constant (0.01-0.08 mg/kg). In Babeni Reservoir sediments, Hg concentrations were very high in the deeper core section (up to 45 mg/kg in the longest core) and decreased to lower concentrations toward the top of the cores (1.3-2.4 mg/kg). This decrease probably reflects technological progress in control of emissions from the Hg-cell-based chlor-alkali industry. Two strong peaks could be distinguished in older sediments. The mean rate of sedimentation (5.9 cm/year) was calculated from the depth of the (137)Cs Chernobyl peak. This was in good agreement with the sedimentation rate estimated at this site from a bathymetric study. Assuming a constant sedimentation rate, the two Hg peaks would reflect two contamination events in 1987 and 1991, respectively. However, it is also possible that the two peaks belong to the same contamination event in 1987 but were separated by a sediment layer richer in sand and silt. This layer had a low Hg concentration, which can be interpreted as a mass deposition event related to a major flood bringing Hg-free sediments. CONCLUSIONS: Whilst the chlor-alkali plant partly switched to a cleaner technology in 1999, no obvious decrease of Hg concentrations was observed in recent decade. Results from the sediment core reflected the historical trend of Hg release from the chlor-alkali plant, revealed important contamination episodes and confirmed a legacy of contamination of Hg in recent sediments even if the concentrations of Hg decreased toward the surface due to a more efficient emission control. RECOMMENDATIONS AND PERSPECTIVES: Although the Hg concentrations in Babeni Reservoir sediments were extremely high in the late eighties and they remain one order of magnitude higher in the surface sediments than in sediments from the upstream reservoir, little is known about the transfer of Hg to the biota and human population. Our initial measurements indicate the presence of monomethyl-Hg (MMHg) in pore water, but further studies are necessary to evaluate fluxes of MMHg at the sediment-water interface. Samples of fish and hair from various groups of the local population were recently collected to evaluate the potential hazard of Hg contamination to human health in the Rm Valcea region.


Asunto(s)
Sedimentos Geológicos/química , Mercurio/química , Ríos/química , Contaminantes Químicos del Agua/química , Animales , Peces , Cabello/química , Humanos , Rumanía , Factores de Tiempo , Contaminación Química del Agua
19.
Bioresour Technol ; 99(15): 7122-31, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18276131

RESUMEN

In 2001, the municipality of Lausanne extended the outlet pipe of the sewage treatment plant into the Bay of Vidy (Lake Geneva, Switzerland) as a measure to reduce bacterial water pollution and sediment contamination close to the lake beaches. The aim of the present study was to assess the impact of this measure. Lake bottom sediments were collected and analyzed for grain size, organic matter, organic carbon, nitrogen, phosphorus, heavy metals and hydrophobic organic compounds to evaluate their concentration and spatial distribution. Our results demonstrate that, compared to results obtained before the outlet pipe prolongation, the surface area of highly contaminated sediments was reduced by one third after the pipe extension. However, contaminant concentrations are still high and the accumulation of pollutants may represent a significant source of toxicity for benthic organisms. One concludes that contaminant reduction at the source will be necessary for a further improvement.


Asunto(s)
Sedimentos Geológicos/química , Aguas del Alcantarillado , Contaminantes del Agua/análisis , Suiza , Microbiología del Agua
20.
Water Res ; 41(1): 63-70, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17101169

RESUMEN

The effects of Pseudokirchneriella subcapitata exudates on the acute toxicity of metals (Cd, Cu, Pb and Zn) were studied using (1h) algal photosynthesis inhibition tests. The metal concentrations tested were 30, 60, 120, 250 and 500microgL(-1) for Cd and Zn; and 500, 1000, 2000, 3000, 4000microgL(-1) for Cu and Pb. It was established that P. subcapitata exudates markedly decreased metal toxicity. This effect was ascribed to: (i) the presence of organic ligands that bind metals and reduce the concentration of free ionic metal, and/or (ii) interaction of exudates with the cell surface with a subsequent decrease in metal uptake. The effects of the exudates on colloid aggregation were also examined using two different types of single particle counters (SPC). Exudates facilitated the colloid removal, likely via acceleration of aggregation (bridging). The results clearly demonstrate that algal exudates play an important role in the biogeochemical cycling of metals in natural surface water: (1) by reducing free metal concentrations and toxicity to living organisms and (2) by favoring colloid aggregation leading to the removal of colloid-bound metals (colloidal pumping). Such results highlight one potential application of the algae in the remediation of metal-contaminated waters. The results also suggest that current algal toxicity testing protocols, in particular long-term and static tests, may underestimate metal toxicity because of the presence of algal exudates.


Asunto(s)
Chlorophyta/química , Coloides/química , Exudados y Transudados/química , Metales Pesados/toxicidad , Pruebas de Toxicidad/métodos , Carbohidratos/química , Chlorophyta/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...