Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35057321

RESUMEN

In this study, the combined effect of graphene oxide (GO) and oxidized multi-walled carbon nanotubes (OMWCNTs) on material properties of the magnesium oxychloride (MOC) phase 5 was analyzed. The selected carbon-based nanoadditives were used in small content in order to obtain higher values of mechanical parameters and higher water resistance while maintaining acceptable price of the final composites. Two sets of samples containing either 0.1 wt. % or 0.2 wt. % of both nanoadditives were prepared, in addition to a set of reference samples without additives. Samples were characterized by X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, and energy dispersive spectroscopy, which were used to obtain the basic information on the phase and chemical composition, as well as the microstructure and morphology. Basic macro- and micro-structural parameters were studied in order to determine the effect of the nanoadditives on the open porosity, bulk and specific density. In addition, the mechanical, hygric and thermal parameters of the prepared nano-doped composites were acquired and compared to the reference sample. An enhancement of all the mentioned types of parameters was observed. This can be assigned to the drop in porosity when GO and OMWCNTs were used. This research shows a pathway of increasing the water resistance of MOC-based composites, which is an important step in the development of the new generation of construction materials.

2.
Materials (Basel) ; 14(16)2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34443099

RESUMEN

The studies focusing on magnesium oxychloride cement (MOC) composites have recently become fairly widespread because of MOC's excellent mechanical properties and environmental sustainability. Numerous fillers, admixtures and nano-dopants were studied in order to improve the overall performance of MOC-based derivatives. Some of them exhibited specific flaws, such as a tendency to aggregate, increase in porosity, aeration of the composite matrix, depreciation in water resistance and mechanical strength, etc. In this manuscript, MOC-based composites doped by multi-walled carbon nanotubes (MWCNTs) are designed and tested. In order to modify the final properties of composites, diatomite was admixed as partial substitution of MgO, which was used in the composition of the researched material in excess, i.e., the majority of MgO constituted part of MOC and the rest served as fine filler. The composites were subjected to the broad experimental campaign that covered SEM (scanning electron microscopy), EDS (energy dispersive spectroscopy), HR-TEM (high-resolution transmission electron microscopy), XRD (X-ray diffraction), OM (optical microscopy) and STA-MS (simultaneous thermal analysis with mass spectroscopy). For 28 days hardened samples, macrostructural and microstructural parameters, mechanical properties, hygric and thermal characteristics were experimentally assessed. The incorporation of MWCNTs and diatomite resulted in the significant enhancement of composites' compactness, mechanical strength and stiffness and reduction in water absorption and rate of water imbibition. The thermal properties of the enriched MOC composites yielded interesting values and provided information for future modification of thermal performance of MOC composites with respect to their specific use in practice, e.g., in passive moderation of indoor climate. The combination of MWCNTs and diatomite represents a valuable modification of the MOC matrix and can be further exploited in the design and development of advanced building materials and components.

3.
Materials (Basel) ; 14(13)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34279331

RESUMEN

Rendering mortars with lightweight zeolite aggregates were designed and tested. The effect of the type of binder used was also researched. For the hardened mortars, macrostructural parameters, mechanical characteristics, hygric and thermal properties were assessed. Specific attention was paid to the analysis of the salt crystallization resistance of the developed rendering mortars. Quartz sand was fully replaced in the composition of mortars with zeolite gave materials with low density, high porosity, sufficient mechanical strength, high water vapor permeability and high water absorption coefficient, which are technical parameters required for repair rendering mortars as prescribed in the WTA directive 2-9-04/D and EN 998-1. Moreover, the zeolite enhanced mortars exhibit good thermal insulation performance and high sorption capacity. The examined rendering mortars were found to be well durable against salt crystallization, which supports their applicability in salt-laden masonry. Based on the compatibility of the repair materials with those originally used, the lime and natural hydraulic lime zeolite mortars can be used as rendering mortars for the repair of historical and heritage buildings. The cement-lime zeolite render is applicable for repair purposes only in the case of the renewal of masonry in which Portland cement-based materials were originally used.

4.
Materials (Basel) ; 14(6)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809728

RESUMEN

The ongoing tendency to create environmentally friendly building materials is nowadays connected with the use of reactive magnesia-based composites. The aim of the presented research was to develop an ecologically sustainable composite material based on MOC (magnesium oxychloride cement) with excellent mechanical, chemical, and physical properties. The effect of the preparation procedure of MOC pastes doped with graphene nanoplatelets on their fresh and hardened properties was researched. One-step and two-step homogenization techniques were proposed as prospective tools for the production of MOC-based composites of advanced parameters. The conducted experiments and analyses covered X-ray fluorescence, scanning electron microscopy, energy-dispersive spectroscopy, high-resolution transmission electron microscopy, sorption analysis, X-ray diffraction, and optical microscopy. The viscosity of the fresh mixtures was monitored using a rotational viscometer. For the hardened composites, macro- and micro-structural parameters were measured together with the mechanical parameters. These tests were performed after 7 days and 14 days. The use of a carbon-based nanoadditive led to a significant drop in porosity, thus densifying the MOC matrix. Accordingly, the mechanical resistance was greatly improved by graphene nanoplatelets. The two-step homogenization procedure positively affected all researched functional parameters of the developed composites (e.g., the compressive strength increase of approximately 54% after 7 days, and 37% after 14 days, respectively) and can be recommended for the preparation of advanced functional materials reinforced with graphene.

5.
Materials (Basel) ; 14(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652947

RESUMEN

Lightweight Sorel's cement composites doped with coal fly ash were produced and tested. Commercially available foam granulate was used as lightening aggregate. For comparison, reference composites made of magnesium oxychloride cement (MOC) and quartz sand were tested as well. The performed experiments included X-ray diffraction, X-ray fluorescence, scanning electron microscopy, light microscopy, and energy dispersive spectroscopy analyses. The macro- and microstructural parameters, mechanical resistance, stiffness, hygric, and thermal parameters of the 28-days matured composites were also researched. The combined use of foam glass and fly ash enabled to get a material of low weight, high porosity, sufficient strength and stiffness, low water imbibition, and greatly improved thermal insulation performance. The developed lightweight composites can be considered as further step in the design and production of alternative and sustainable materials for construction industry.

6.
Materials (Basel) ; 14(3)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498565

RESUMEN

In this contribution, composite materials based on magnesium oxychloride cement (MOC) with multi-walled carbon nanotubes (MWCNTs) used as an additive were prepared and characterized. The prepared composites contained 0.5 and 1 wt.% of MWCNTs, and these samples were compared with the pure MOC Phase 5 reference. The composites were characterized using a broad spectrum of analytical methods to determine the phase and chemical composition, morphology, and thermal behavior. In addition, the basic structural parameters, pore size distribution, mechanical strength, stiffness, and hygrothermal performance of the composites, aged 14 days, were also the subject of investigation. The MWCNT-doped composites showed high compactness, increased mechanical resistance, stiffness, and water resistance, which is crucial for their application in the construction industry and their future use in the design and development of alternative building products.

7.
Materials (Basel) ; 13(24)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327587

RESUMEN

A high-performance magnesium oxychloride cement (MOC) composite composed of silica sand, diatomite powder, and doped with graphene nanoplatelets was prepared and characterized. Diatomite was used as a 10 vol.% replacement for silica sand. The dosage of graphene was 0.5 wt.% of the sum of the MgO and MgCl2·6H2O masses. The broad product characterization included high-resolution transmission electron microscopy, X-ray diffraction, X-ray fluorescence, scanning electron microscopy and energy dispersive spectroscopy analyses. The macrostructural parameters, pore size distribution, mechanical resistance, stiffness, hygric and thermal parameters of the composites matured for 28-days were also the subject of investigation. The combination of diatomite and graphene nanoplatelets greatly reduced the porosity and average pore size in comparison with the reference material composed of MOC and silica sand. In the developed composites, well stable and mechanically resistant phase 5 was the only precipitated compound. Therefore, the developed composite shows high compactness, strength, and low water imbibition which ensure high application potential of this novel type of material in the construction industry.

8.
Materials (Basel) ; 13(12)2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604933

RESUMEN

Copper nanoparticles are of great interest in various applications, such as catalysis, cooling fluids, conductive inks or for their antibacterial activity. In this paper, the thermal behavior of copper nanoparticles was studied using thermogravimetry, differential thermal analysis and differential scanning calorimetry. Original Cu samples as well as the products of oxidation were analysed by X-ray diffraction, scanning/transmission electron microscopy and energy dispersive spectroscopy. A step-by-step oxidation mechanism during the oxidation of Cu nano-powders was observed. The Cu-nano oxidation starts slightly above 150 °C when bulk copper does not yet react. The dominant oxidation product in the first step is Cu2O while CuO was identified as the final state of oxidation. Our results confirm an easier oxidation process of Cu-nano than Cu-micro particles, which must be attributed to kinetic not thermodynamic aspects of oxidation reactions.

9.
Materials (Basel) ; 13(11)2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503182

RESUMEN

Worldwide, Portland cement-based materials are the most commonly used construction materials. As the Portland cement industry negatively affects the environment due to the excessive emission of carbon dioxide and depletion of natural resources, new alternative materials are being searched. Therefore, the goal of the paper was to design and develop eco-friendly, low-cost, and sustainable magnesium oxychloride cement (MOC)-based building material with a low carbon footprint, which is characterized by reduced porosity, high mechanical resistance, and durability in terms of water damage. To make new material eco-efficient and functional, silica sand which was used in the composition of the control composite mixture was partially replaced with coal fly ash (FA), a byproduct of coal combustion. The chemical and mineralogical composition, morphology, and particle morphology of FA were characterized. For silica sand, FA, and MgO, specific density, loose bulk density, and particle size distribution were measured. Additionally, Blaine specific surface was for FA and MgO powder assessed. The workability of fresh mixtures was characterized by spread diameter. For the hardened MOC composites, basic structural, mechanical, hygric, and thermal properties were measured. Moreover, the phase composition of precipitated MOC phases and their thermal stability were investigated for MOC-FA pastes. The use of FA led to the great decrease in porosity and pore size compared to the control material with silica sand as only filler which was in agreement with the workability of fresh composite mixtures. The compressive strength increased with the replacement of silica sand with FA. On the contrary, the flexural strength slightly decreased with silica sand substitution ratio. It clearly proved the assumption of the filler function of FA, whereas its assumed reactivity with MOC cement components was not proven. The water transport and storage were significantly reduced by the use of FA in composites, which greatly improved their resistance against moisture damage. The heat transport and storage parameters were only slightly affected by FA incorporation in composite mixtures.

10.
Materials (Basel) ; 13(8)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344756

RESUMEN

The aim of this paper is to prepare nano-functionalized ceramic foam filters from carbon-bonded alumina. The carbon-bonded filters were produced via the Schwartzwalder process using a two-step approach. The prepared ceramic foam filters were further coated using graphene oxide. Graphene oxide was prepared by the modified Tour method. The C/O of the graphene oxide ratio was evaluated by XPS, EDS and elemental analysis (EA). The amount and type of individual oxygen functionalities were characterized by XPS and Raman spectroscopy. The microstructure was studied by TEM, and XRD was used to evaluate the interlayer distance. In the next step, filters were coated by graphene oxide using dip-coating. After drying, the prepared composite filters were used for the purification of the water containing lead, zinc and cadmium ions. The efficiency of the sorption was very high, suggesting the potential use of these materials for the treatment of wastewater from heavy metals.

11.
Materials (Basel) ; 13(3)2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046098

RESUMEN

In this paper, magnesium oxychloride cement with stoichiometry 3Mg(OH)2∙MgCl2∙8H2O (MOC 3-1-8) was prepared and characterized. The phase composition and kinetics of formation were studied by X-ray diffraction (XRD) and Rietveld analysis of obtained diffractograms. The chemical composition was analyzed using X-ray fluorescence (XRF) and energy dispersive spectroscopy (EDS). Furthermore, scanning electron microscopy (SEM) was used to study morphology, and Fourier Transform Infrared (FT-IR) spectroscopy was also used for the analysis of the prepared sample. In addition, thermal stability was tested using simultaneous thermal analysis (STA) combined with mass spectroscopy (MS). The obtained data gave evidence of the fast formation of MOC 3-1-8, which started to precipitate rapidly. As the length of the time of ripening increased, the amount of MgO decreased, while the amount of MOC 3-1-8 increased. The fast formation of the MOC 3-1-8 phase at an ambient temperature is important for its application in the production of low-energy construction materials, which corresponds with the challenges of a sustainable building industry.

12.
Materials (Basel) ; 12(19)2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31569669

RESUMEN

Y2BaCuO5 often occurs as an accompanying phase of the well-known high-temperature superconductor YBa2Cu3O7 (also known as YBCO). Y2BaCuO5, easily identifiable due to its characteristic green coloration, is often referred to as 'green phase' or 'Y-211'. In this contribution, Y2BaCuO5 phase was studied in detail with a focus on its thermal and thermodynamic properties. Energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were employed in the study of sample's morphology and chemical composition. XRD data were further analyzed and lattice parameters refined by Rietveld analysis. Simultaneous thermal analysis was employed to study thermal stability. Particle size distribution was analyzed by laser diffraction. Finally, thermodynamic properties, namely heat capacity and relative enthalpy, were measured by drop calorimetry, differential scanning calorimetry (DSC), and physical properties measurement system (PPMS). Enthalpy of formation was assessed from ab-initio DFT calculations.

13.
Materials (Basel) ; 12(15)2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31349591

RESUMEN

The aim of this paper is to prepare and characterize partially-oxidized graphite oxide and consider if it is possible to affect the level of oxidation of particles by an adjustment of the oxidizing agent. Several samples were prepared, using different amounts of oxidizing agent. The samples were subsequently analyzed. The C/O ratio was evaluated from XPS, EDS, and EA. The amount and type of individual oxygen functionalities were characterized by XPS, Raman spectroscopy, and cyclic voltammetry. The structure was studied by SEM and XRD. Thermal stability was investigated by STA-MS in argon atmosphere. The results can be useful in order to design simple technology for graphite oxide synthesis with required oxygen content.

14.
Materials (Basel) ; 12(14)2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31295888

RESUMEN

Mechanically-activated wood-based biomass ash (WBA) was studied as a potential active admixture for design of a novel lime-pozzolan-based mortar for renovation purposes. The replacement ratio of lime hydrate in a mortar mix composition was 5%, 10%, and 15% by mass. The water/binder ratio and the sand/binder ratio were kept constant for all examined mortar mixes. Both binder constituents were characterized by their powder density, specific density, BET (Brunauer-Emmett-Teller), and Blaine specific surfaces. Their chemical composition was measured by X-ray fluorescence analysis (XRF) and mineralogical analysis was performed using X-ray diffraction (XRD). Morphology of WBA was investigated by scanning electron microscopy (SEM) and element mapping was performed using an energy dispersive spectroscopy (EDS) analyzer. The pozzolanic activity of WBA was tested by the Chapelle test and assessment of the Portlandite content used simultaneous thermal analysis (STA). For the hardened mortar samples, a complete set of structural, mechanical, hygric, and thermal parameters was experimentally determined. The mortars with WBA admixing yielded similar or better functional properties than those obtained for traditional pure lime-based plaster, pointing to their presumed application as rendering and walling renovation mortars. As the Chapelle test, STA, and mechanical test proved high pozzolanity of WBA, it was classified as an alternative eco-efficient low-cost pozzolan for use in lime blend-based building materials. The savings in CO2 emissions and energy by the use of WBA as a partial lime hydrate substitute in mortar composition were also highly appreciated with respect to the sustainability of the construction industry.

15.
Materials (Basel) ; 12(6)2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-30917584

RESUMEN

The goal of the paper was development and testing of a novel type of ternary blended binder based on lime hydrate, metakaolin, and biomass ash that was studied as a binding material for production of lightweight mortar for renovation purposes. The biomass ash used as one of binder components was coming from wood chips ash combustion in a biomass heating plant. The raw ash was mechanically activated by grinding. In mortar composition, wood chips ash and metakaolin were used as partial substitutes of lime hydrate. Silica sand of particle size fraction 0⁻2 mm was mixed from three normalized sand fractions. For the evaluation of the effect of biomass ash and metakaolin incorporation in mortar mix on material properties, reference lime mortar was tested as well. Among the basic physical characterization of biomass ash, metakaolin and lime hydrate, specific density, specific surface, and particle size distribution were assessed. Their chemical composition was measured by X-Ray fluorescence analysis (XRF), morphology was examined using scanning electron microscopy (SEM), elements mapping was performed using energy dispersive spectroscopy (EDS) analyser, and mineralogical composition was tested using X-Ray diffraction (XRD). For the developed mortars, set of structural, mechanical, hygric, and thermal properties was assessed. The mortars with ternary blended binder exhibited improved mechanical resistance, lower thermal conductivity, and increased water vapor permeability compared to the reference lime mortar. Based on good functional performance of the produced mortar, the tested biomass ash could potentially represent a novel sustainable alternative to other pozzolans commonly used in construction industry. Moreover, reuse of biomass ash in production of building materials is highly beneficial both from the environmental and economic reasons especially taking into account circular economy principles. The ternary blended binder examined in this paper can find use in both rendering and walling repair mortars meeting the requirements of culture heritage authorities and technical standards.

16.
Waste Manag ; 80: 89-100, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30455031

RESUMEN

Wood chips ash coming from biomass heating plant is studied as an eco-friendly mineral admixture in mortar mix design. The raw material was mechanically activated by milling in a vibratory disc mill to a degree of fineness comparable to cement. For the mortars with ash dosage, basic physical, mechanical, hygric, and thermal properties is accessed. The mortars with partial Portland cement replacement with wood chips ash exhibited good functional properties for all studied ash dosages. With increasing amount of the ash used, the average pore diameter decreased due to the partial filler effect of WCHA in mortar mix. The strength activity index was very high for all studied mortars and gave evidence of the wood chips ash pozzolanity. The pozzolan effectiveness coefficient varied from 1.52 to 0.59, which proved the pozzolanity of the studied ash and synergic effects in the Portland cement-ash-water system. The results of leaching tests showed, the chlorides contained in ash were safely immobilized in the silicate matrix. The environmental evaluation revealed decrease in both carbon dioxide production and energy consumption by the use of wood chips ash in mortar mix. For the mortar with 20% substitution of Portland cement with wood chips ash, it represents 15% of CO2 and 16% of energy, as compared with the reference mortar mix. As the developed mortars possess good functional and environmental parameters the analyzed wood chips ash can be considered as an eco-efficient low-cost alternative to other pozzolans for production of blended binders.


Asunto(s)
Ceniza del Carbón , Madera , Biomasa , Materiales de Construcción , Minerales
17.
Materials (Basel) ; 11(6)2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-29857530

RESUMEN

Polypropylene (PP) is one of the most widely produced types of plastic worldwide, but its recycling is limited. This work presents a study of the utilization of expanded polypropylene (EPP) waste in a magnesium oxychloride cement (MOC) composite usable in the building industry. MOC is formed by mixing magnesium oxide powder and a concentrated solution of magnesium chloride and is characterized by excellent bonding ability to large quantities of different types of aggregates. A developed air-cured MOC composite, where an EPP-based aggregate was used for the full replacement of natural aggregate, was investigated in terms of its basic physical, mechanical, thermal and water resistance properties. The results demonstrate that incorporation of EPP waste greatly improved the thermal insulation properties, while the mechanical resistance was reduced to an acceptable level. The developed MOC composite containing EPP waste can be considered as an alternative thermal insulation material applicable for the construction of floor or envelope construction systems.

18.
Chemistry ; 23(43): 10473-10479, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28543831

RESUMEN

Halogenated graphenes have been attracting great attention in the recent years. The currently used methods are usually non-specific, and halogen groups are randomly distributed over the graphene. Here we demonstrate a selective graphene functionalization based on a well known reaction mechanism-Hunsdiecker reaction-applied on selective bromination of graphene oxide. The chemical analysis using various spectroscopic methods proved a high efficiency of this functionalization method. Bromination can be carried out under mild conditions without any high temperature or high pressure treatment. The chemical modification led to introduction of up to 20 wt.% of bromine covalently bonded to the graphene skeleton. The modified graphene was characterized in detail using a broad range of microscopic and spectroscopic methods and no significant contamination by reaction by-products was detected.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA