Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38255566

RESUMEN

Ferroelectric scandium-doped aluminum nitride (Al1-xScxN) is of considerable research interest because of its superior ferroelectricity. Studies indicate that Al1-xScxN may suffer from a high leakage current, which can hinder further thickness scaling and long-term reliability. In this work, we systematically investigate the origin of the leakage current in Al0.7Sc0.3N films via experiments and theoretical calculations. The results reveal that the leakage may originate from the nitrogen vacancies with positively charged states and fits well with the trap-assisted Poole-Frenkel (P-F) emission. Moreover, we examine the cycling behavior of ferroelectric Al0.7Sc0.3N-based FeRAM devices. We observe that the leakage current substantially increases when the device undergoes bipolar cycling with a pulse amplitude larger than the coercive electric field. Our analysis shows that the increased leakage current in bipolar cycling is caused by the monotonously reduced trap energy level by monitoring the direct current (DC) leakage under different temperatures and the P-F emission fitting.

3.
Nanoscale ; 15(41): 16658-16668, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37800342

RESUMEN

Biomarkers have the potential to be utilized in disease diagnosis, prediction and monitoring. The cancer cell type is a leading candidate for next-generation biomarkers. Although traditional digital biomolecular sensor (DBS) technology has shown to be effective in assessing cell-based interactions, low cell-population detection of cancer cell types is extremely challenging. Here, we controlled the electrical signature of a two-dimensional (2D) nanomaterial, tungsten disulfide (WS2), by utilizing a combination of the Phage-integrated Polymer and the Nanosheet (PPN), viz., the integration of the M13-conjugated polyethylene glycol (PEG) and the WS2, through shape-complementarity phenomena, and developed a sensor system, i.e., the Phage-based DBS (P-DBS), for the specific, rapid, sensitive detection of clinically-relevant MCF-7 cells. The P-DBS attains a detection limit of 12 cells per µL, as well as a contrast of 1.25 between the MCF-10A sample signal and the MCF-7 sample signal. A reading length of 200 µs was further achieved, along with a relative cell viability of ∼100% for both MCF-7 and MCF-10A cells and with the PNN. Atomistic simulations reveal the structural origin of the shape complementarity-facilitated decrease in the output impedance of the P-DBS. The combination of previously unreported exotic sensing materials and digital sensor design represents an approach to unlocking the ultra-sensitive detection of cancer cell types and provides a promising avenue for early cancer diagnosis, staging and monitoring.


Asunto(s)
Nanoestructuras , Neoplasias , Humanos , Células MCF-7 , Polietilenglicoles , Límite de Detección , Nanoestructuras/química , Biomarcadores
4.
Adv Sci (Weinh) ; 9(36): e2204453, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36372549

RESUMEN

There is an ever-increasing demand for next-generation devices that do not require passwords and are impervious to cloning. For traditional hardware security solutions in edge computing devices, inherent limitations are addressed by physical unclonable functions (PUF). However, realizing efficient roots of trust for resource constrained hardware remains extremely challenging, despite excellent demonstrations with conventional silicon circuits and archetypal oxide memristor-based crossbars. An attractive, down-scalable approach to design efficient cryptographic hardware is to harness memristive materials with a large-degree-of-randomness in materials state variations, but this strategy is still not well understood. Here, the utilization of high-degree-of-randomness amorphous (A) state variations associated with different operating conditions via thermal fluctuation effects is demonstrated, as well as an integrated framework for in memory computing and next generation security primitives, viz., APUF, for achieving secure key generation and device authentication. Near ideal uniformity and uniqueness without additional initial writing overheads in weak memristive A-PUF is achieved. In-memory computing empowers a strong exclusive OR (XOR-) and-repeat A PUF construction to avoid machine learning attacks, while rapid crystallization processes enable large-sized-key reconfigurability. These findings pave the way for achieving a broadly applicable security primitive for enhancing antipiracy of integrated systems and product authentication in supply chains.

5.
ACS Omega ; 7(27): 23075-23082, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35847245

RESUMEN

Developing novel nanostructures and advanced nanotechnologies for cancer treatment has attracted ever-increasing interest. Electrothermal therapy offers many advantages such as high efficiency and minimal invasiveness, but finding a balance between increasing stability of the nanostructure state and, at the same time, enhancing the nanostructure biodegradability presents a key challenge. Here, we modulate the biodegradation process of two-dimensional-material-based nanostructures by using polyethylene glycol (PEG) via nanostructure disrupt-and-release effects. We then demonstrate the development of a previously unreported alternating current (AC) pulse WS2/PEG nanostructure system for enhancing therapeutic performance. A decrease in cell viability of ∼42% for MCF-7 cells with WS2/PEG was achieved, which is above an average of ∼25% for current electrothermal-based therapeutic methods using similar energy densities, as well as degradation time of the WS2 of ∼1 week, below an average of ∼3.5 weeks for state-of-the-art nanostructure-based systems in physiological media. Moreover, the incubation time of MCF-7 cells with WS2/PEG reached ∼24 h, which is above the average of ∼4.5 h for current electrothermal-based therapeutic methods and with the use of the amount of time harnessed to incubate the cells with nanostructures before applying a stimulus as a measure of incubation time. Material characterizations further disclose the degradation of WS2 and the grafting of PEG on WS2 surfaces. These WS2-based systems offer strong therapeutic performance and, simultaneously, maintain excellent biodegradability/biocompatibility, thus providing a promising route for the ablation of cancer.

6.
ACS Omega ; 7(22): 18459-18470, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35694527

RESUMEN

Biosensors are of vital significance for healthcare by supporting the management of infectious diseases for preventing pandemics and the diagnosis of life-threatening conditions such as cancer. However, the advancement of the field can be limited by low sensing accuracy. Here, we altered the bioelectrical signatures of the cells using carbon nanotubes (CNTs) via structural loosening effects. Using an alternating current (AC) pulse under light irradiation, we developed a photo-assisted AC pulse sensor based on CNTs to differentiate between healthy breast epithelial cells (MCF-10A) and luminal breast cancer cells (MCF-7) within a heterogeneous cell population. We observed a previously undemonstrated increase in current contrast for MCF-7 cells with CNTs compared to MCF-10A cells with CNTs under light exposure. Moreover, we obtained a detection limit of ∼1.5 × 103 cells below a baseline of ∼1 × 104 cells for existing electrical-based sensors for an adherent, heterogeneous cell population. All-atom molecular dynamics (MD) simulations reveal that interactions between the embedded CNT and cancer cell membranes result in a less rigid lipid bilayer structure, which can facilitate CNT translocation for enhancing current. This as-yet unconsidered cancer cell-specific method based on the unique optoelectrical properties of CNTs represents a strategy for unlocking the detection of a small population of cancer cells and provides a promising route for the early diagnosis, monitoring, and staging of cancer.

7.
Nanoscale ; 14(21): 7934-7942, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35603889

RESUMEN

The growing importance of applications based on molecular medicine and genetic engineering is driving the need to develop high-performance electroporation technologies. The electroporation phenomenon involves disruption of the cell for increasing membrane permeability. Although there is a multitude of research focused on exploring new electroporation techniques, the engineering of programming schemes suitable for these electroporation methods remains a challenge. Nanosecond stimulations could be promising candidates for these techniques owing to their ability to generate a wide range of biological responses. Here we control the membrane permeabilization of cancer cells using different numbers of electric-field pulses through orientational disordering effects. We then report our exploration of a few-volt nanosecond alternating-current (AC) stimulation method with an increased number of pulses for developing electroporation systems. A recovery time of ∼720 min was achieved, which is above the average of ∼76 min for existing electroporation methods using medium cell populations, as well as a previously unreported increased conductance with an increase in the number of pulses using weak bias amplitudes. All-atom molecular dynamics (MD) simulations reveal the orientation-disordering-facilitated increase in the degree of permeabilization. These findings highlight the potential of few-volt nanosecond AC-stimulation with an increased number of pulse strategies for the development of next-generation low-power electroporation systems.


Asunto(s)
Electricidad , Electroporación , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Electroporación/métodos , Simulación de Dinámica Molecular
8.
Pharmaceutics ; 15(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36678734

RESUMEN

Promising results in clinical studies have been demonstrated by the utilization of electrothermal agents (ETAs) in cancer therapy. However, a difficulty arises from the balance between facilitating the degradation of ETAs, and at the same time, increasing the electrothermal performance/stability required for highly efficient treatment. In this study, we controlled the thermal signature of the MoS2 by harnessing MoS2 nanostructures with M13 phage (MNM) via the structural assembling (hydrophobic interaction) phenomena and developed a combined PANC-1 cancer cell-MNM alternating current (AC)-stimulus framework for cancer cell ablation and electrothermal therapy. A percentage decrease in the cell viability of ~23% was achieved, as well as a degradation time of 2 weeks; a stimulus length of 100 µs was also achieved. Molecular dynamics (MD) simulations revealed the assembling kinetics in integrated M13 phage-cancer cell protein systems and the structural origin of the hydrophobic interaction-enabled increase in thermal conduction. This study not only introduced an 'ideal' agent that avoided the limitations of ETAs but also provided a proof-of-concept application of MoS2-based materials in efficacious cancer therapy.

9.
ACS Appl Mater Interfaces ; 13(50): 60209-60215, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34878241

RESUMEN

The transformation from silent to functional synapses is accompanied by the evolutionary process of human brain development and is essential to hardware implementation of the evolutionary artificial neural network but remains a challenge for mimicking silent to functional synapse activation. Here, we developed a simple approach to successfully realize activation of silent to functional synapses by controlled sulfurization of chemical vapor deposition-grown indium selenide crystals. The underlying mechanism is attributed to the migration of sulfur anions introduced by sulfurization. One of our most important findings is that the functional synaptic behaviors can be modulated by the degree of sulfurization and temperature. In addition, the essential synaptic behaviors including potentiation/depression, paired-pulse facilitation, and spike-rate-dependent plasticity are successfully implemented in the partially sulfurized functional synaptic device. The developed simple approach of introducing sulfur anions in layered selenide opens an effective new avenue to realize activation of silent synapses for application in evolutionary artificial neural networks.


Asunto(s)
Materiales Biomiméticos/metabolismo , Indio/metabolismo , Redes Neurales de la Computación , Compuestos de Selenio/metabolismo , Azufre/metabolismo , Sinapsis/metabolismo , Materiales Biomiméticos/química , Humanos , Indio/química , Ensayo de Materiales , Compuestos de Selenio/química , Azufre/química , Sinapsis/química
10.
Nanoscale Adv ; 3(24): 6974-6983, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36132361

RESUMEN

Changes in lipid composition and structure during cell development can be markers for cell apoptosis or various diseases such as cancer. Although traditional fluorescence techniques utilising molecular probes have been studied, these methods are limited in studying these micro-changes as they require complex probe preparation and cannot be reused, making cell monitoring and detection challenging. Here, we developed a direct current (DC) resistance sensor based on two-dimensional (2D) molybdenum disulfide (MoS2) nanosheets to enable cancer cell-specific detection dependent on micro-changes in the cancer cell membrane. Atomistic molecular dynamics (MD) simulations were used to study the interaction between 2D MoS2 and cancer lipid bilayer systems, and revealed that previously unconsidered perturbations in the lipid bilayer can cause an increase in resistance. Under an applied DC sweep, we observed an increase in resistance when cancer cells were incubated with the nanosheets. Furthermore, a correlation was observed between the resistance and breast cancer epithelial cell (MCF-7) population, illustrating a cell population-dependent sensitivity of our method. Our method has a detection limit of ∼3 × 103 cells, below a baseline of ∼1 × 104 cells for the current state-of-the-art electrical-based biosensors using an adherent monolayer with homogenous cells. This combination of a unique 2D material and electrical resistance framework represents a promising approach for the early detection of cancerous cells and to reduce the risk of post-surgery cancer recurrence.

11.
ACS Omega ; 6(51): 35325-35333, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34984264

RESUMEN

Long-term nondestructive monitoring of cells is of significant importance for understanding cell proliferation, cell signaling, cell death, and other processes. However, traditional monitoring methods are limited to a certain range of testing conditions and may reduce cell viability. Here, we present a microgap, multishot electroporation (M2E) system for monitoring cell recovery for up to ∼2 h using ∼5 V pulses and with excellent cell viability using a medium cell population. Electric field simulations reveal the bias-voltage- and gap-size-dependent electric field intensities in the M2E system. In addition to excellent transparency with low cell toxicity, the M2E system does not require specialized components, expensive materials, complicated fabrication processes, or cell manipulations; it just consists of a micrometer-sized pattern and a low-voltage square-wave generator. Ultimately, the M2E system can offer a long-term and nontoxic method of cell monitoring.

12.
Nanoscale ; 12(47): 24214-24227, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33289758

RESUMEN

The biological template and its mutants have vital significance in next generation remediation, electrochemical, photovoltaic, catalytic, sensing and digital memory devices. However, a microscopic model describing the biotemplating process is generally lacking on account of modelling complexity, which has prevented widespread commercial use of biotemplates. Here, we demonstrate M13-biotemplating kinetics in atomic resolution by leveraging large-scale molecular dynamics (MD) simulations. The model reveals the assembly of gold nanoparticles on two experimentally-based M13 phage types using full M13-capsid structural models and with polarizable gold nanoparticles in explicit solvent. Both mechanistic and structural insights into the selective binding affinity of the M13 phage to gold nanoparticles are obtained based on a previously unconsidered clamp-based binding-pocket-favored N-terminal-domain assembly and also on surface-peptide flexibility. These results provide a deeper level of understanding of protein sequence-based affinity and open the route for genetically engineering a wide range of 3D electrodes for high-density low-cost device integration.


Asunto(s)
Oro , Nanopartículas del Metal , Secuencia de Aminoácidos , Bacteriófago M13 , Péptidos
13.
ACS Appl Mater Interfaces ; 10(49): 41855-41860, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30507141

RESUMEN

We describe how the crystallization kinetics of a suite of phase-change systems can be controlled by using a single-shot treatment via "initial crystallization" effects. Ultrarapid and highly stable phase-change structures (with excellent characteristics), viz. conventional and sub-10 nm sized cells (400 ps switching and 368 K for 10 year data retention), stackable cells (900 ps switching and 1 × 106 cycles for similar "switching-on" voltages), and multilevel configurations (800 ps switching and resistance-drift power-law coefficients <0.11) have been demonstrated. Material measurements and thermal calculations also reveal the origin of the pretreatment-assisted increase in crystallization rates and the thermal diffusion in chalcogenide structures, respectively.

14.
ACS Appl Bio Mater ; 1(2): 210-215, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35016385

RESUMEN

We observed a unique bioelectric signal of human embryonic stem cells using direct current-voltage measurements facilitated by few-layered 2D-MoS2 sheets. A 1.828 mA cell signal was achieved (2 orders of magnitude higher than previous electrical-based detection methods) as well as multiple cell reading cycles demonstrating I ∼ 1.9 mA. Native stem cell proliferation, viability, and pluripotency were preserved. Molecular dynamics simulations elucidated the origin of the 2D-MoS2 sheet-assisted increase in current flow. This paves the way for the development of a broadly applicable, fast, and damage-free stem cell detection method capable of identifying pluripotency with virtually any complementary-metal-oxide-semiconductor circuits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...