Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(10): 4228-4237, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30782827

RESUMEN

Pharmacological agents that raise cAMP and activate protein kinase A (PKA) stimulate 26S proteasome activity, phosphorylation of subunit Rpn6, and intracellular degradation of misfolded proteins. We investigated whether a similar proteasome activation occurs in response to hormones and under various physiological conditions that raise cAMP. Treatment of mouse hepatocytes with glucagon, epinephrine, or forskolin stimulated Rpn6 phosphorylation and the 26S proteasomes' capacity to degrade ubiquitinated proteins and peptides. These agents promoted the selective degradation of short-lived proteins, which are misfolded and regulatory proteins, but not the bulk of cell proteins or lysosomal proteolysis. Proteasome activities and Rpn6 phosphorylation increased similarly in working hearts upon epinephrine treatment, in skeletal muscles of exercising humans, and in electrically stimulated rat muscles. In WT mouse kidney cells, but not in cells lacking PKA, treatment with antidiuretic hormone (vasopressin) stimulated within 5-minutes proteasomal activity, Rpn6 phosphorylation, and the selective degradation of short-lived cell proteins. In livers and muscles of mice fasted for 12-48 hours cAMP levels, Rpn6 phosphorylation, and proteasomal activities increased without any change in proteasomal content. Thus, in vivo cAMP-PKA-mediated proteasome activation is a common cellular response to diverse endocrine stimuli and rapidly enhances the capacity of target tissues to degrade regulatory and misfolded proteins (e.g., proteins damaged upon exercise). The increased destruction of preexistent regulatory proteins may help cells adapt their protein composition to new physiological conditions.


Asunto(s)
8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , 8-Bromo Monofosfato de Adenosina Cíclica/metabolismo , Animales , Colforsina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Epinefrina/farmacología , Glucagón/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Riñón , Masculino , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Fosforilación , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Proteolisis/efectos de los fármacos , Deficiencias en la Proteostasis/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Proteínas Ubiquitinadas/metabolismo
2.
Glia ; 66(2): 379-395, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29076578

RESUMEN

In several neurodegenerative diseases in which misfolded proteins accumulate there is impairment of the ubiquitin proteasome system (UPS). We tested if a similar disruption of proteostasis occurs in hereditary peripheral neuropathies. In sciatic nerves from mouse models of two human neuropathies, Myelin Protein Zero mutation (S63del) and increased copy number (P0 overexpression), polyubiquitinated proteins accumulated, and the overall rates of protein degradation were decreased. 26S proteasomes affinity-purified from sciatic nerves of S63del mice were defective in degradation of peptides and a ubiquitinated protein, unlike proteasomes from P0 overexpression, which appeared normal. Nevertheless, cellular levels of 26S proteasomes were increased in both, through the proteolytic-activation of the transcription factor Nrf1, as occurs in response to proteasome inhibitors. In S63del, increased amounts of the deubiquitinating enzymes USP14, UCH37, and USP5 were associated with proteasomes, the first time this has been reported in a human disease model. Inhibitors of USP14 increased the rate of protein degradation in S63del sciatic nerves and unexpectedly increased the phosphorylation of eIF2α by Perk. Thus, proteasome content, composition and activity are altered in these diseases and USP14 inhibitors have therapeutic potential in S63del neuropathy.


Asunto(s)
Neuropatía Hereditaria Motora y Sensorial/genética , Neuropatía Hereditaria Motora y Sensorial/metabolismo , Complejo de la Endopetidasa Proteasomal/fisiología , Proteolisis , Nervio Ciático/metabolismo , Animales , Femenino , Neuropatía Hereditaria Motora y Sensorial/patología , Masculino , Ratones , Ratones Transgénicos , Nervio Ciático/patología , Ubiquitina Tiolesterasa/biosíntesis , Ubiquitina Tiolesterasa/genética
5.
Proc Natl Acad Sci U S A ; 112(52): E7176-85, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26669444

RESUMEN

Although rates of protein degradation by the ubiquitin-proteasome pathway (UPS) are determined by their rates of ubiquitination, we show here that the proteasome's capacity to degrade ubiquitinated proteins is also tightly regulated. We studied the effects of cAMP-dependent protein kinase (PKA) on proteolysis by the UPS in several mammalian cell lines. Various agents that raise intracellular cAMP and activate PKA (activators of adenylate cyclase or inhibitors of phosphodiesterase 4) promoted degradation of short-lived (but not long-lived) cell proteins generally, model UPS substrates having different degrons, and aggregation-prone proteins associated with major neurodegenerative diseases, including mutant FUS (Fused in sarcoma), SOD1 (superoxide dismutase 1), TDP43 (TAR DNA-binding protein 43), and tau. 26S proteasomes purified from these treated cells or from control cells and treated with PKA degraded ubiquitinated proteins, small peptides, and ATP more rapidly than controls, but not when treated with protein phosphatase. Raising cAMP levels also increased amounts of doubly capped 26S proteasomes. Activated PKA phosphorylates the 19S subunit, Rpn6/PSMD11 (regulatory particle non-ATPase 6/proteasome subunit D11) at Ser14. Overexpression of a phosphomimetic Rpn6 mutant activated proteasomes similarly, whereas a nonphosphorylatable mutant decreased activity. Thus, proteasome function and protein degradation are regulated by cAMP through PKA and Rpn6, and activation of proteasomes by this mechanism may be useful in treating proteotoxic diseases.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Colforsina/farmacología , Células HEK293 , Humanos , Immunoblotting , Mutación , Inhibidores de Fosfodiesterasa 4/farmacología , Fosforilación , Complejo de la Endopetidasa Proteasomal/genética , Pliegue de Proteína , Proteolisis/efectos de los fármacos , Rolipram/farmacología , Serina/metabolismo , Vasodilatadores/farmacología
6.
PLoS One ; 9(1): e87687, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24498167

RESUMEN

Growth factors, such as myostatin (Mstn), play an important role in regulating post-natal myogenesis. In fact, loss of Mstn has been shown to result in increased post-natal muscle growth through enhanced satellite cell functionality; while elevated levels of Mstn result in dramatic skeletal muscle wasting through a mechanism involving reduced protein synthesis and increased ubiquitin-mediated protein degradation. Here we show that miR-27a/b plays an important role in feed back auto-regulation of Mstn and thus regulation of post-natal myogenesis. Sequence analysis of Mstn 3' UTR showed a single highly conserved miR-27a/b binding site and increased expression of miR-27a/b was correlated with decreased expression of Mstn and vice versa both in vitro and in mice in vivo. Moreover, we also show that Mstn gene expression was regulated by miR-27a/b. Treatment with miR-27a/b-specific AntagomiRs resulted in increased Mstn expression, reduced myoblast proliferation, impaired satellite cell activation and induction of skeletal muscle atrophy that was rescued upon either blockade of, or complete absence of, Mstn. Consistent with this, miR-27a over expression resulted in reduced Mstn expression, skeletal muscle hypertrophy and an increase in the number of activated satellite cells, all features consistent with impaired Mstn function. Loss of Smad3 was associated with increased levels of Mstn, concomitant with decreased miR-27a/b expression, which is consistent with impaired satellite cell function and muscular atrophy previously reported in Smad3-null mice. Interestingly, treatment with Mstn resulted in increased miR-27a/b expression, which was shown to be dependent on the activity of Smad3. These data highlight a novel auto-regulatory mechanism in which Mstn, via Smad3 signaling, regulates miR-27a/b and in turn its own expression. In support, Mstn-mediated inhibition of Mstn 3' UTR reporter activity was reversed upon miR-27a/b-specific AntagomiR transfection. Therefore, miR-27a/b, through negatively regulating Mstn, plays a role in promoting satellite cell activation, myoblast proliferation and preventing muscle wasting.


Asunto(s)
Regulación de la Expresión Génica/fisiología , MicroARNs/metabolismo , Desarrollo de Músculos/fisiología , Miostatina/biosíntesis , Células Satélite del Músculo Esquelético/metabolismo , Proteína smad3/metabolismo , Regiones no Traducidas 3'/fisiología , Animales , Línea Celular , Masculino , Ratones , Ratones Mutantes , MicroARNs/genética , Miostatina/genética , Células Satélite del Músculo Esquelético/citología , Proteína smad3/genética
7.
J Biol Chem ; 289(11): 7654-70, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24451368

RESUMEN

To date a plethora of evidence has clearly demonstrated that continued high calorie intake leads to insulin resistance and type-2 diabetes with or without obesity. However, the necessary signals that initiate insulin resistance during high calorie intake remain largely unknown. Our results here show that in response to a regimen of high fat or high glucose diets, Mstn levels were induced in muscle and liver of mice. High glucose- or fat-mediated induction of Mstn was controlled at the level of transcription, as highly conserved carbohydrate response and sterol-responsive (E-box) elements were present in the Mstn promoter and were revealed to be critical for ChREBP (carbohydrate-responsive element-binding protein) or SREBP1c (sterol regulatory element-binding protein 1c) regulation of Mstn expression. Further molecular analysis suggested that the increased Mstn levels (due to high glucose or fatty acid loading) resulted in increased expression of Cblb in a Smad3-dependent manner. Casitas B-lineage lymphoma b (Cblb) is an ubiquitin E3 ligase that has been shown to specifically degrade insulin receptor substrate 1 (IRS1) protein. Consistent with this, our results revealed that elevated Mstn levels specifically up-regulated Cblb, resulting in enhanced ubiquitin proteasome-mediated degradation of IRS1. In addition, over expression or knock down of Cblb had a major impact on IRS1 and pAkt levels in the presence or absence of insulin. Collectively, these observations strongly suggest that increased glucose levels and high fat diet, both, result in increased circulatory Mstn levels. The increased Mstn in turn is a potent inducer of insulin resistance by degrading IRS1 protein via the E3 ligase, Cblb, in a Smad3-dependent manner.


Asunto(s)
Dieta/efectos adversos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina , Miostatina/metabolismo , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Proteína smad3/metabolismo , Animales , Secuencia de Bases , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Grasas de la Dieta/administración & dosificación , Regulación de la Expresión Génica , Glucosa/administración & dosificación , Glucosa/metabolismo , Células Hep G2 , Humanos , Lentivirus/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Proteínas Nucleares/metabolismo , Palmitatos/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Transcripción/metabolismo
8.
Mol Endocrinol ; 28(3): 317-30, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24438338

RESUMEN

Smad (Sma and Mad-related protein) 2/3 are downstream signaling molecules for TGF-ß and myostatin (Mstn). Recently, Mstn was shown to induce reactive oxygen species (ROS) in skeletal muscle via canonical Smad3, nuclear factor-κB, and TNF-α pathway. However, mice lacking Smad3 display skeletal muscle atrophy due to increased Mstn levels. Hence, our aims were first to investigate whether Mstn induced muscle atrophy in Smad3(-/-) mice by increasing ROS and second to delineate Smad3-independent signaling mechanism for Mstn-induced ROS. Herein we show that Smad3(-/-) mice have increased ROS levels in skeletal muscle, and inactivation of Mstn in these mice partially ablates the oxidative stress. Furthermore, ROS induction by Mstn in Smad3(-/-) muscle was not via nuclear factor-κB (p65) signaling but due to activated p38, ERK MAPK signaling and enhanced IL-6 levels. Consequently, TNF-α, nicotinamide adenine dinucleotide phosphate oxidase, and xanthine oxidase levels were up-regulated, which led to an increase in ROS production in Smad3(-/-) skeletal muscle. The exaggerated ROS in the Smad3(-/-) muscle potentiated binding of C/EBP homology protein transcription factor to MuRF1 promoter, resulting in enhanced MuRF1 levels leading to muscle atrophy.


Asunto(s)
Proteínas Musculares/genética , Miostatina/fisiología , Proteína smad3/genética , Factor de Transcripción ReIA/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Células CHO , Catalasa/metabolismo , Cricetinae , Cricetulus , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Femenino , Expresión Génica , Glutatión Peroxidasa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patología , Regiones Promotoras Genéticas , Especies Reactivas de Oxígeno/metabolismo , Proteína smad3/deficiencia , Factor de Transcripción CHOP/metabolismo , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/metabolismo , Regulación hacia Arriba
9.
Mol Endocrinol ; 27(9): 1518-35, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23927930

RESUMEN

Obesity is associated with insulin resistance and abnormal peripheral tissue glucose uptake. However, the mechanisms that interfere with insulin signaling and glucose uptake in human skeletal muscle during obesity are not fully characterized. Using microarray, we have identified that the expression of Pid1 gene, which encodes for a protein that contains a phosphotyrosine-interacting domain, is increased in myoblasts established from overweight insulin-resistant individuals. Molecular analysis further validated that both Pid1 mRNA and protein levels are increased in cell culture models of insulin resistance. Consistent with these results, overexpression of phosphotyrosine interaction domain-containing protein 1 (PID1) in human myoblasts resulted in reduced insulin signaling and glucose uptake, whereas knockdown of PID1 enhanced glucose uptake and insulin signaling in human myoblasts and improved the insulin sensitivity following palmitate-, TNF-α-, or myostatin-induced insulin resistance in human myoblasts. Furthermore, the number of mitochondria in myoblasts that ectopically express PID1 was significantly reduced. In addition to overweight humans, we find that Pid1 levels are also increased in all 3 peripheral tissues (liver, skeletal muscle, and adipose tissue) in mouse models of diet-induced obesity and insulin resistance. An in silico search for regulators of Pid1 expression revealed the presence of nuclear factor-κB (NF-κB) binding sites in the Pid1 promoter. Luciferase reporter assays and chromatin immunoprecipitation studies confirmed that NF-κB is sufficient to transcriptionally up-regulate the Pid1 promoter. Furthermore, we find that myostatin up-regulates Pid1 expression via an NF-κB signaling mechanism. Collectively these results indicate that Pid1 is a potent intracellular inhibitor of insulin signaling pathway during obesity in humans and mice.


Asunto(s)
Proteínas Portadoras/metabolismo , Resistencia a la Insulina , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Obesidad/patología , Adulto , Animales , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Técnicas de Silenciamiento del Gen , Humanos , Insulina/metabolismo , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Músculo Esquelético/efectos de los fármacos , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Mioblastos/patología , Miostatina/metabolismo , FN-kappa B/metabolismo , Obesidad/genética , Ácido Palmítico/farmacología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Necrosis Tumoral alfa/farmacología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Adulto Joven
10.
J Biol Chem ; 288(9): 6663-78, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23297411

RESUMEN

High doses of dexamethasone (Dex) or myostatin (Mstn) induce severe atrophy of skeletal muscle. Here we show a novel microRNA1 (miR1)-mediated mechanism through which Dex promotes skeletal muscle atrophy. Using both C2C12 myotubes and mouse models of Dex-induced atrophy we show that Dex induces miR1 expression through glucocorticoid receptor (GR). We further show that Mstn treatment facilitates GR nuclear translocation and thereby induces miR1 expression. Inhibition of miR1 in C2C12 myotubes attenuated the Dex-induced increase in atrophy-related proteins confirming a role for miR1 in atrophy. Analysis of miR1 targets revealed that HSP70 is regulated by miR1 during atrophy. Our results demonstrate that increased miR1 during atrophy reduced HSP70 levels, which resulted in decreased phosphorylation of AKT, as HSP70 binds to and protects phosphorylation of AKT. We further show that loss of pAKT leads to decreased phosphorylation, and thus, enhanced activation of FOXO3, up-regulation of MuRF1 and Atrogin-1, and progression of skeletal muscle atrophy. Based on these results, we propose a model whereby Dex- and Mstn-mediated atrophic signals are integrated through miR1, which then either directly or indirectly, inhibits the proteins involved in providing protection against atrophy.


Asunto(s)
Antiinflamatorios/efectos adversos , Dexametasona/efectos adversos , Proteínas HSP70 de Choque Térmico/metabolismo , MicroARNs/metabolismo , Modelos Biológicos , Atrofia Muscular/inducido químicamente , Atrofia Muscular/metabolismo , Animales , Antiinflamatorios/farmacología , Células CHO , Cricetinae , Cricetulus , Dexametasona/farmacología , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Ratones , Ratones Noqueados , MicroARNs/genética , Proteínas Musculares/biosíntesis , Proteínas Musculares/genética , Atrofia Muscular/genética , Atrofia Muscular/patología , Fosforilación/efectos de los fármacos , Fosforilación/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Ligasas SKP Cullina F-box/biosíntesis , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/biosíntesis , Ubiquitina-Proteína Ligasas/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
11.
Cell Metab ; 16(5): 613-24, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23140641

RESUMEN

Recent research reveals that dysfunction and subsequent loss of mitochondria (mitophagy) is a potent inducer of skeletal muscle wasting. However, the molecular mechanisms that govern the deregulation of mitochondrial function during muscle wasting are unclear. In this report, we show that different muscle-wasting stimuli upregulated mitochondrial E3 ubiquitin protein ligase 1 (Mul1), through a mechanism involving FoxO1/3 transcription factors. Overexpression of Mul1 in skeletal muscles and myoblast cultures was sufficient for the induction of mitophagy. Consistently, Mul1 suppression not only protected against mitophagy but also partially rescued the muscle wasting observed in response to muscle-wasting stimuli. In addition, upregulation of Mul1, while increasing mitochondrial fission, resulted in ubiquitination and degradation of the mitochondrial fusion protein Mfn2. Collectively, these data explain the molecular basis for the loss of mitochondrial number during muscle wasting.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Mitofagia/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular , ADN Mitocondrial/efectos de los fármacos , ADN Mitocondrial/metabolismo , Dexametasona/farmacología , Factores de Transcripción Forkhead/metabolismo , GTP Fosfohidrolasas/metabolismo , Glucocorticoides/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Mioblastos/metabolismo , Miostatina/farmacología , Transducción de Señal/efectos de los fármacos , Ubiquitinación , Regulación hacia Arriba
12.
Am J Physiol Cell Physiol ; 303(5): C512-29, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22673621

RESUMEN

Atrogin-1, a muscle-specific E3 ligase, targets MyoD for degradation through the ubiquitin-proteasome-mediated system. Myostatin, a member of the transforming growth factor-ß superfamily, potently inhibits myogenesis by lowering MyoD levels. While atrogin-1 is upregulated by myostatin, it is currently unknown whether atrogin-1 plays a role in mediating myostatin signaling to regulate myogenesis. In this report, we have confirmed that atrogin-1 increasingly interacts with MyoD upon recombinant human myostatin (hMstn) treatment. The absence of atrogin-1, however, led to elevated MyoD levels and permitted the differentiation of atrogin-1(-/-) primary myoblast cultures despite the presence of exogenous myostatin. Furthermore, inactivation of atrogin-1 rescued myoblasts from growth inhibition by hMstn. Therefore, these results highlight the central role of atrogin-1 in regulating myostatin signaling during myogenesis. Currently, there are only two known targets of atrogin-1. Thus, we next characterized the associated proteins of atrogin-1 in control and hMstn-treated C2C12 cell cultures by stably expressing tagged atrogin-1 in myoblasts and myotubes, and sequencing the coimmunoprecipitated proteome. We found that atrogin-1 putatively interacts with sarcomeric proteins, transcriptional factors, metabolic enzymes, components of translation, and spliceosome formation. In addition, we also identified that desmin and vimentin, two components of the intermediate filament in muscle, directly interacted with and were degraded by atrogin-1 in response to hMstn. In summary, the muscle wasting effects of the myostatin-atrogin-1 axis are not only limited to the degradation of MyoD and eukaryotic translation initiation factor 3 subunit f, but also encompass several proteins that are involved in a wide variety of cellular activities in the muscle.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Mioblastos Esqueléticos/metabolismo , Miostatina/farmacología , Proteínas Ligasas SKP Cullina F-box/metabolismo , Animales , Proliferación Celular , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas Musculares/genética , Proteína MioD/genética , Proteína MioD/metabolismo , Unión Proteica , Subunidades de Proteína , Proteínas Ligasas SKP Cullina F-box/genética , Sarcómeros/metabolismo , Transcriptoma
13.
Biochem J ; 446(1): 23-36, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22621320

RESUMEN

Humoral and tumoral factors collectively promote cancer-induced skeletal muscle wasting by increasing protein degradation. Although several humoral proteins, namely TNFα (tumour necrosis factor α) and IL (interleukin)-6, have been shown to induce skeletal muscle wasting, there is a lack of information regarding the tumoral factors that contribute to the atrophy of muscle during cancer cachexia. Therefore, in the present study, we have characterized the secretome of C26 colon cancer cells to identify the tumoral factors involved in cancer-induced skeletal muscle wasting. In the present study, we show that myostatin, a procachectic TGFß (transforming growth factor ß) superfamily member, is abundantly secreted by C26 cells. Consistent with myostatin signalling during cachexia, treating differentiated C2C12 myotubes with C26 CM (conditioned medium) resulted in myotubular atrophy due to the up-regulation of muscle-specific E3 ligases, atrogin-1 and MuRF1 (muscle RING-finger protein 1), and enhanced activity of the ubiquitin-proteasome pathway. Furthermore, the C26 CM also activated ActRIIB (activin receptor type II B)/Smad and NF-κB (nuclear factor κB) signalling, and reduced the activity of the IGF-I (insulin-like growth factor 1)/PI3K (phosphoinositide 3-kinase)/Akt pathway, three salient molecular features of myostatin action in skeletal muscles. Antagonists to myostatin prevented C26 CM-induced wasting in muscle cell cultures, further confirming that tumoral myostatin may be a key contributor in the pathogenesis of cancer cachexia. Finally, we show that treatment with C26 CM induced the autophagy-lysosome pathway and reduced the number of mitochondria in myotubes. These two previously unreported observations were recapitulated in skeletal muscles collected from C26 tumour-bearing mice.


Asunto(s)
Caquexia/fisiopatología , Neoplasias del Colon/fisiopatología , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Receptores de Activinas Tipo II/metabolismo , Activinas/metabolismo , Animales , Autofagia , Caquexia/etiología , Caquexia/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , Medios de Cultivo Condicionados/farmacología , Humanos , Lisosomas/metabolismo , Ratones , Ratones Endogámicos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/efectos de los fármacos , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
14.
J Biol Chem ; 287(16): 12935-51, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22362769

RESUMEN

Classically, peroxisome proliferator-activated receptor ß/δ (PPARß/δ) function was thought to be restricted to enhancing adipocyte differentiation and development of adipose-like cells from other lineages. However, recent studies have revealed a critical role for PPARß/δ during skeletal muscle growth and regeneration. Although PPARß/δ has been implicated in regulating myogenesis, little is presently known about the role and, for that matter, the mechanism(s) of action of PPARß/δ in regulating postnatal myogenesis. Here we report for the first time, using a PPARß/δ-specific ligand (L165041) and the PPARß/δ-null mouse model, that PPARß/δ enhances postnatal myogenesis through increasing both myoblast proliferation and differentiation. In addition, we have identified Gasp-1 (growth and differentiation factor-associated serum protein-1) as a novel downstream target of PPARß/δ in skeletal muscle. In agreement, reduced Gasp-1 expression was detected in PPARß/δ-null mice muscle tissue. We further report that a functional PPAR-responsive element within the 1.5-kb proximal Gasp-1 promoter region is critical for PPARß/δ regulation of Gasp-1. Gasp-1 has been reported to bind to and inhibit the activity of myostatin; consistent with this, we found that enhanced secretion of Gasp-1, increased Gasp-1 myostatin interaction and significantly reduced myostatin activity upon L165041-mediated activation of PPARß/δ. Moreover, we analyzed the ability of hGASP-1 to regulate myogenesis independently of PPARß/δ activation. The results revealed that hGASP-1 protein treatment enhances myoblast proliferation and differentiation, whereas silencing of hGASP-1 results in defective myogenesis. Taken together these data revealed that PPARß/δ is a positive regulator of skeletal muscle myogenesis, which functions through negatively modulating myostatin activity via a mechanism involving Gasp-1.


Asunto(s)
Desarrollo de Músculos/fisiología , Mioblastos/metabolismo , Miostatina/metabolismo , PPAR delta/metabolismo , PPAR-beta/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Diferenciación Celular/fisiología , División Celular/fisiología , Células Cultivadas , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Mutantes , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Mioblastos/citología , Miostatina/genética , PPAR delta/agonistas , PPAR-beta/agonistas , Fenoxiacetatos/farmacología , Transducción de Señal/fisiología
15.
Mol Endocrinol ; 25(11): 1936-49, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21964591

RESUMEN

Ubiquitination-mediated proteolysis is a hallmark of skeletal muscle wasting manifested in response to negative growth factors, including myostatin. Thus, the characterization of signaling mechanisms that induce the ubiquitination of intracellular and sarcomeric proteins during skeletal muscle wasting is of great importance. We have recently characterized myostatin as a potent negative regulator of myogenesis and further demonstrated that elevated levels of myostatin in circulation results in the up-regulation of the muscle-specific E3 ligases, Atrogin-1 and muscle ring finger protein 1 (MuRF1). However, the exact signaling mechanisms by which myostatin regulates the expression of Atrogin-1 and MuRF1, as well as the proteins targeted for degradation in response to excess myostatin, remain to be elucidated. In this report, we have demonstrated that myostatin signals through Smad3 (mothers against decapentaplegic homolog 3) to activate forkhead box O1 and Atrogin-1 expression, which further promotes the ubiquitination and subsequent proteasome-mediated degradation of critical sarcomeric proteins. Smad3 signaling was dispensable for myostatin-dependent overexpression of MuRF1. Although down-regulation of Atrogin-1 expression rescued approximately 80% of sarcomeric protein loss induced by myostatin, only about 20% rescue was seen when MuRF1 was silenced, implicating that Atrogin-1 is the predominant E3 ligase through which myostatin manifests skeletal muscle wasting. Furthermore, we have highlighted that Atrogin-1 not only associates with myosin heavy and light chain, but it also ubiquitinates these sarcomeric proteins. Based on presented data we propose a model whereby myostatin induces skeletal muscle wasting through targeting sarcomeric proteins via Smad3-mediated up-regulation of Atrogin-1 and forkhead box O1.


Asunto(s)
Músculo Esquelético/metabolismo , Miostatina/metabolismo , Proteína smad3/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animales , Línea Celular , Células Cultivadas , Folistatina/genética , Folistatina/metabolismo , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Immunoblotting , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miostatina/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteína smad3/genética , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
16.
Am J Physiol Cell Physiol ; 301(6): C1316-24, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21900687

RESUMEN

Myostatin is a negative regulator of skeletal muscle growth and in fact acts as a potent inducer of "cachectic-like" muscle wasting in mice. The mechanism of action of myostatin in promoting muscle wasting has been predominantly studied in murine models. Despite numerous reports linking elevated levels of myostatin to human skeletal muscle wasting conditions, little is currently known about the signaling mechanism(s) through which myostatin promotes human skeletal muscle wasting. Therefore, in this present study we describe in further detail the mechanisms behind myostatin regulation of human skeletal muscle wasting using an in vitro human primary myotube atrophy model. Treatment of human myotube populations with myostatin promoted dramatic myotubular atrophy. Mechanistically, myostatin-induced myotube atrophy resulted in reduced p-AKT concomitant with the accumulation of active dephosphorylated Forkhead Box-O (FOXO1) and FOXO3. We further show that addition of myostatin results in enhanced activation of atrogin-1 and muscle-specific RING finger protein 1 (MURF1) and reduced expression of both myosin light chain (MYL) and myosin heavy chain (MYH). In addition, we found that myostatin-induced loss of MYL and MYH proteins is dependent on the activity of the proteasome and mediated via SMAD3-dependent regulation of FOXO1 and atrogin-1. Therefore, these data suggest that the mechanism through which myostatin promotes muscle wasting is very well conserved between species, and that myostatin-induced human myotube atrophy is mediated through inhibition of insulin-like growth factor (IGF)/phosphoinositide 3-kinase (PI3-K)/AKT signaling and enhanced activation of the ubiquitin-proteasome pathway and elevated protein degradation.


Asunto(s)
Proteínas Musculares/metabolismo , Mioblastos/metabolismo , Miostatina/metabolismo , Transducción de Señal/fisiología , Síndrome Debilitante/metabolismo , Western Blotting , Células Cultivadas , Humanos , Inmunoprecipitación , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Mioblastos/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Interferente Pequeño/genética , Radioinmunoensayo , Sarcómeros/metabolismo , Sarcómeros/patología , Ubiquitina/metabolismo , Síndrome Debilitante/patología
17.
Cell Res ; 21(11): 1591-604, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21502976

RESUMEN

TGF-ß and myostatin are the two most important regulators of muscle growth. Both growth factors have been shown to signal through a Smad3-dependent pathway. However to date, the role of Smad3 in muscle growth and differentiation is not investigated. Here, we demonstrate that Smad3-null mice have decreased muscle mass and pronounced skeletal muscle atrophy. Consistent with this, we also find increased protein ubiquitination and elevated levels of the ubiquitin E3 ligase MuRF1 in muscle tissue isolated from Smad3-null mice. Loss of Smad3 also led to defective satellite cell (SC) functionality. Smad3-null SCs showed reduced propensity for self-renewal, which may lead to a progressive loss of SC number. Indeed, decreased SC number was observed in skeletal muscle from Smad3-null mice showing signs of severe muscle wasting. Further in vitro analysis of primary myoblast cultures identified that Smad3-null myoblasts exhibit impaired proliferation, differentiation and fusion, resulting in the formation of atrophied myotubes. A search for the molecular mechanism revealed that loss of Smad3 results in increased myostatin expression in Smad3-null muscle and myoblasts. Given that myostatin is a negative regulator, we hypothesize that increased myostatin levels are responsible for the atrophic phenotype in Smad3-null mice. Consistent with this theory, inactivation of myostatin in Smad3-null mice rescues the muscle atrophy phenotype.


Asunto(s)
Diferenciación Celular , Mioblastos/citología , Células Satélite del Músculo Esquelético/citología , Transducción de Señal , Proteína smad3/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Noqueados , Proteínas Musculares/metabolismo , Atrofia Muscular/patología , Mioblastos/metabolismo , Miostatina/deficiencia , Miostatina/genética , Miostatina/metabolismo , Oligopéptidos/farmacología , Fenotipo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma , Células Satélite del Músculo Esquelético/metabolismo , Proteína smad3/deficiencia , Proteína smad3/genética , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
18.
Am J Physiol Cell Physiol ; 301(1): C195-203, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21508334

RESUMEN

Myostatin, a member of the transforming growth factor-ß superfamily, has been implicated in the potent negative regulation of myogenesis in murine models. However, little is known about the mechanism(s) through which human myostatin negatively regulates human skeletal muscle growth. Using human primary myoblasts and recombinant human myostatin protein, we show here that myostatin blocks human myoblast proliferation by regulating cell cycle progression through targeted upregulation of p21. We further show that myostatin regulates myogenic differentiation through the inhibition of key myogenic regulatory factors including MyoD, via canonical Smad signaling. In addition, we have for the first time demonstrated the capability of myostatin to regulate the Notch signaling pathway during inhibition of human myoblast differentiation. Treatment with myostatin results in the upregulation of Hes1, Hes5, and Hey1 expression during differentiation; moreover, when we interfere with Notch signaling, through treatment with the γ-secretase inhibitor L-685,458, we find enhanced myotube formation despite the presence of excess myostatin. Therefore, blockade of the Notch pathway relieves myostatin repression of differentiation, and myostatin upregulates Notch downstream target genes. Immunoprecipitation studies demonstrate that myostatin treatment of myoblasts results in enhanced association of Notch1-intracellular domain with Smad3, providing an additional mechanism through which myostatin targets and represses the activity of the myogenic regulatory factor MyoD. On the basis of these results, we suggest that myostatin function and mechanism of action are very well conserved between species, and that myostatin regulation of postnatal myogenesis involves interactions with numerous downstream signaling mediators, including the Notch pathway.


Asunto(s)
Diferenciación Celular , Músculo Esquelético/crecimiento & desarrollo , Mioblastos/citología , Mioblastos/metabolismo , Miostatina/metabolismo , Adolescente , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carbamatos/farmacología , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Células Cultivadas , Niño , Proteínas de Unión al ADN/metabolismo , Dipéptidos/farmacología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Inmunoprecipitación , Ratones , Desarrollo de Músculos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteína MioD/metabolismo , Factores Reguladores Miogénicos/metabolismo , Reacción en Cadena de la Polimerasa , Receptores Notch/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Factor de Transcripción HES-1 , Factor de Crecimiento Transformador beta , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
19.
Virol J ; 6: 77, 2009 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-19531208

RESUMEN

Chikungunya fever is a viral disease transmitted to humans by the bite of CHIKV virus infected Aedes mosquitoes. During monsoon outbreak of chikungunya fever, we carried out the genetic predisposition to chikungunya in disease affected 100 families by doing blood group (ABO) tests by focusing on individuals who were likely to have a risk of chikungunya and identified the blood group involved in susceptibility/resistance to chikungunya. In the present study, based on blood group antigens, the individuals were kept in four groups - A (108), B (98), AB (20) and O (243). The result obtained was showed all Rh positive blood group individuals are susceptible to chikungunya fever. Among ABO group, the blood group O +ve individuals are more susceptible to chikungunya than other blood groups. No blood group with Rh negative was affected with chikungunya, it indicates Rh -ve more resistance to chikungunya.


Asunto(s)
Infecciones por Alphavirus/genética , Virus Chikungunya/patogenicidad , Predisposición Genética a la Enfermedad , Sistema del Grupo Sanguíneo ABO , Humanos , India , Sistema del Grupo Sanguíneo Rh-Hr
20.
Virol J ; 5: 31, 2008 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-18302795

RESUMEN

BACKGROUND: Chikungunya (CHIK) fever is a viral disease transmitted to humans by the bite of Chikungunya virus (CHIK virus) infected Aedes mosquitoes. CHIK virus is a member of the Alphavirus genus of the family Togaviridae. Previous reports have indicated that infection with CHIK virus produces an acute arthritis in human hosts by large area of necrosis and collagenosis or fibrosis. RESULTS: We carried out the present study to determine the effect of chikungunya on the collagen and connective tissue metabolism in 75 chikungunya-affected people. First, we screened for mucopolysaccharides in urine by Cetyl Trimethyl Ammonium Bromide (CTAB) test. Appearance of heavy precipitate indicates the presence of higher levels of mucopolysaccharides and later quantified by DMB dye method. The urinary mucopolysaccharide in CHIK patients was 342 +/- 45 mg/l compared to healthy controls (45 +/- 5.6 mg/l). The collagen building blocks, proline and hydroxyproline were also measured in CHIK patients and observed higher excretion compared to healthy controls. Urinary excretions hydroxyproline was greater than the proline levels. CONCLUSION: These results indicate that CHIK virus infection affects and damage the cartilage and connective metabolism and releases the degraded products from the tissue and responsible for increasing the levels of proline, hydroxyproline and mucopolysaccharides in CHIK affected patients.


Asunto(s)
Infecciones por Alphavirus/fisiopatología , Infecciones por Alphavirus/virología , Artritis/virología , Virus Chikungunya/patogenicidad , Adolescente , Adulto , Animales , Artritis/fisiopatología , Colágeno/metabolismo , Tejido Conectivo/metabolismo , Femenino , Glicosaminoglicanos/orina , Humanos , Hidroxiprolina/orina , Masculino , Persona de Mediana Edad , Prolina/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...