Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Infect Dis ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546721

RESUMEN

BACKGROUND: Admission and discharge screening of patients for asymptomatic gut colonization with multidrug-resistant organisms (MDROs) is a traditional approach to active surveillance, but its sensitivity for detecting colonization is uncertain. METHODS: Daily rectal or fecal swab samples and clinical data were collected over 12 months from patients in one 25-bed intensive care unit (ICU) in Chicago, IL USA and tested for the following multidrug-resistant organisms (MDROs): vancomycin-resistant enterococci (VRE); third-generation cephalosporin-resistant Enterobacterales, including extended-spectrum ß-lactamase-producing Enterobacterales (ESBL); and carbapenem-resistant Enterobacterales (CRE). MDRO detection by (1) admission/discharge surveillance cultures or (2) clinical cultures were compared to daily surveillance cultures. Samples underwent 16S rRNA gene sequencing to measure the relative abundance of operational taxonomic units (OTUs) corresponding to each MDRO. RESULTS: Compared with daily surveillance cultures, admission/discharge cultures detected 91% of prevalent MDRO colonization and 63% of incident MDRO colonization among medical ICU patients. Only a minority (7%) of MDRO carriers were identified by clinical cultures. Higher relative abundance of MDRO-associated OTUs and specific antibiotic exposures were independently associated with higher probability of MDRO detection by culture. CONCLUSION: Admission and discharge surveillance cultures underestimated MDRO acquisitions in an ICU. These limitations should be considered when designing sampling strategies for epidemiologic studies that use culture-based surveillance.

2.
Cell ; 187(5): 1206-1222.e16, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38428395

RESUMEN

Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.


Asunto(s)
Bacterias , Tracto Gastrointestinal , Metagenoma , Plásmidos , Humanos , Bacterias/genética , Bacteroidetes/genética , Heces/microbiología , Plásmidos/genética
3.
JAMA ; 330(14): 1337-1347, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37815567

RESUMEN

Importance: Universal nasal mupirocin plus chlorhexidine gluconate (CHG) bathing in intensive care units (ICUs) prevents methicillin-resistant Staphylococcus aureus (MRSA) infections and all-cause bloodstream infections. Antibiotic resistance to mupirocin has raised questions about whether an antiseptic could be advantageous for ICU decolonization. Objective: To compare the effectiveness of iodophor vs mupirocin for universal ICU nasal decolonization in combination with CHG bathing. Design, Setting, and Participants: Two-group noninferiority, pragmatic, cluster-randomized trial conducted in US community hospitals, all of which used mupirocin-CHG for universal decolonization in ICUs at baseline. Adult ICU patients in 137 randomized hospitals during baseline (May 1, 2015-April 30, 2017) and intervention (November 1, 2017-April 30, 2019) were included. Intervention: Universal decolonization involving switching to iodophor-CHG (intervention) or continuing mupirocin-CHG (baseline). Main Outcomes and Measures: ICU-attributable S aureus clinical cultures (primary outcome), MRSA clinical cultures, and all-cause bloodstream infections were evaluated using proportional hazard models to assess differences from baseline to intervention periods between the strategies. Results were also compared with a 2009-2011 trial of mupirocin-CHG vs no decolonization in the same hospital network. The prespecified noninferiority margin for the primary outcome was 10%. Results: Among the 801 668 admissions in 233 ICUs, the participants' mean (SD) age was 63.4 (17.2) years, 46.3% were female, and the mean (SD) ICU length of stay was 4.8 (4.7) days. Hazard ratios (HRs) for S aureus clinical isolates in the intervention vs baseline periods were 1.17 for iodophor-CHG (raw rate: 5.0 vs 4.3/1000 ICU-attributable days) and 0.99 for mupirocin-CHG (raw rate: 4.1 vs 4.0/1000 ICU-attributable days) (HR difference in differences significantly lower by 18.4% [95% CI, 10.7%-26.6%] for mupirocin-CHG, P < .001). For MRSA clinical cultures, HRs were 1.13 for iodophor-CHG (raw rate: 2.3 vs 2.1/1000 ICU-attributable days) and 0.99 for mupirocin-CHG (raw rate: 2.0 vs 2.0/1000 ICU-attributable days) (HR difference in differences significantly lower by 14.1% [95% CI, 3.7%-25.5%] for mupirocin-CHG, P = .007). For all-pathogen bloodstream infections, HRs were 1.00 (2.7 vs 2.7/1000) for iodophor-CHG and 1.01 (2.6 vs 2.6/1000) for mupirocin-CHG (nonsignificant HR difference in differences, -0.9% [95% CI, -9.0% to 8.0%]; P = .84). Compared with the 2009-2011 trial, the 30-day relative reduction in hazards in the mupirocin-CHG group relative to no decolonization (2009-2011 trial) were as follows: S aureus clinical cultures (current trial: 48.1% [95% CI, 35.6%-60.1%]; 2009-2011 trial: 58.8% [95% CI, 47.5%-70.7%]) and bloodstream infection rates (current trial: 70.4% [95% CI, 62.9%-77.8%]; 2009-2011 trial: 60.1% [95% CI, 49.1%-70.7%]). Conclusions and Relevance: Nasal iodophor antiseptic did not meet criteria to be considered noninferior to nasal mupirocin antibiotic for the outcome of S aureus clinical cultures in adult ICU patients in the context of daily CHG bathing. In addition, the results were consistent with nasal iodophor being inferior to nasal mupirocin. Trial Registration: ClinicalTrials.gov Identifier: NCT03140423.


Asunto(s)
Antiinfecciosos , Baños , Clorhexidina , Yodóforos , Mupirocina , Sepsis , Infecciones Estafilocócicas , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Administración Intranasal , Antibacterianos/uso terapéutico , Antiinfecciosos/administración & dosificación , Antiinfecciosos/uso terapéutico , Antiinfecciosos Locales/uso terapéutico , Baños/métodos , Clorhexidina/administración & dosificación , Clorhexidina/uso terapéutico , Infección Hospitalaria/epidemiología , Infección Hospitalaria/microbiología , Infección Hospitalaria/prevención & control , Unidades de Cuidados Intensivos/estadística & datos numéricos , Yodóforos/administración & dosificación , Yodóforos/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Mupirocina/administración & dosificación , Mupirocina/uso terapéutico , Ensayos Clínicos Pragmáticos como Asunto , Sepsis/epidemiología , Sepsis/microbiología , Sepsis/prevención & control , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/prevención & control , Staphylococcus aureus/aislamiento & purificación , Estados Unidos/epidemiología
4.
Infect Control Hosp Epidemiol ; 44(9): 1375-1380, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37700540

RESUMEN

OBJECTIVE: To assess whether measurement and feedback of chlorhexidine gluconate (CHG) skin concentrations can improve CHG bathing practice across multiple intensive care units (ICUs). DESIGN: A before-and-after quality improvement study measuring patient CHG skin concentrations during 6 point-prevalence surveys (3 surveys each during baseline and intervention periods). SETTING: The study was conducted across 7 geographically diverse ICUs with routine CHG bathing. PARTICIPANTS: Adult patients in the medical ICU. METHODS: CHG skin concentrations were measured at the neck, axilla, and inguinal region using a semiquantitative colorimetric assay. Aggregate unit-level CHG skin concentration measurements from the baseline period and each intervention period survey were reported back to ICU leadership, which then used routine education and quality improvement activities to improve CHG bathing practice. We used multilevel linear models to assess the impact of intervention on CHG skin concentrations. RESULTS: We enrolled 681 (93%) of 736 eligible patients; 92% received a CHG bath prior to survey. At baseline, CHG skin concentrations were lowest on the neck, compared to axillary or inguinal regions (P < .001). CHG was not detected on 33% of necks, 19% of axillae, and 18% of inguinal regions (P < .001 for differences in body sites). During the intervention period, ICUs that used CHG-impregnated cloths had a 3-fold increase in patient CHG skin concentrations as compared to baseline (P < .001). CONCLUSIONS: Routine CHG bathing performance in the ICU varied across multiple hospitals. Measurement and feedback of CHG skin concentrations can be an important tool to improve CHG bathing practice.


Asunto(s)
Cuidados Críticos , Unidades de Cuidados Intensivos , Adulto , Humanos , Retroalimentación , Clorhexidina
5.
Cell Rep ; 42(8): 113009, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37598339

RESUMEN

To understand how a bacterium ultimately succeeds or fails in adapting to a new host, it is essential to assess the temporal dynamics of its fitness over the course of colonization. Here, we introduce a human-derived commensal organism, Bacteroides thetaiotaomicron (Bt), into the guts of germ-free mice to determine whether and how the genetic requirements for colonization shift over time. Combining a high-throughput functional genetics assay and transcriptomics, we find that gene usage changes drastically during the first days of colonization, shifting from high expression of amino acid biosynthesis genes to broad upregulation of diverse polysaccharide utilization loci. Within the first week, metabolism becomes centered around utilization of a predominant dietary oligosaccharide, and these changes are largely sustained through 6 weeks of colonization. Spontaneous mutations in wild-type Bt also evolve around this locus. These findings highlight the importance of considering temporal colonization dynamics in developing more effective microbiome-based therapies.


Asunto(s)
Bacteroides thetaiotaomicron , Microbiota , Humanos , Animales , Ratones , Bacteroides thetaiotaomicron/genética , Aclimatación , Bioensayo , Perfilación de la Expresión Génica
6.
Genome Biol ; 24(1): 78, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069665

RESUMEN

BACKGROUND: Changes in microbial community composition as a function of human health and disease states have sparked remarkable interest in the human gut microbiome. However, establishing reproducible insights into the determinants of microbial succession in disease has been a formidable challenge. RESULTS: Here we use fecal microbiota transplantation (FMT) as an in natura experimental model to investigate the association between metabolic independence and resilience in stressed gut environments. Our genome-resolved metagenomics survey suggests that FMT serves as an environmental filter that favors populations with higher metabolic independence, the genomes of which encode complete metabolic modules to synthesize critical metabolites, including amino acids, nucleotides, and vitamins. Interestingly, we observe higher completion of the same biosynthetic pathways in microbes enriched in IBD patients. CONCLUSIONS: These observations suggest a general mechanism that underlies changes in diversity in perturbed gut environments and reveal taxon-independent markers of "dysbiosis" that may explain why widespread yet typically low-abundance members of healthy gut microbiomes can dominate under inflammatory conditions without any causal association with disease.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Trasplante de Microbiota Fecal , Metagenómica , Aminoácidos , Heces
7.
bioRxiv ; 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36993556

RESUMEN

Plasmids are extrachromosomal genetic elements that often encode fitness enhancing features. However, many bacteria carry 'cryptic' plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes, and is 14 times as numerous as crAssphage, currently established as the most abundant genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales and although it does not appear to impact bacterial host fitness in vivo, can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an inexpensive alternative for detecting human colonic inflammatory states.

8.
Front Cell Dev Biol ; 10: 999351, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36393870

RESUMEN

Emerging and re-emerging respiratory viruses can spread rapidly and cause pandemics as demonstrated by the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. The early human immune responses to respiratory viruses are in the nasal cavity and nasopharyngeal regions. Defining biomarkers of disease trajectory at the time of a positive diagnostic test would be an important tool to facilitate decisions such as initiation of antiviral treatment. We hypothesize that nasopharyngeal tRNA profiles could be used to predict Coronavirus Disease 19 (COVID-19) severity. We carried out multiplex small RNA sequencing (MSR-seq) on residual nasopharyngeal swabs to measure simultaneously full-length tRNA abundance, tRNA modifications, and tRNA fragmentation for the human tRNA response to SARS-CoV-2 infection. We identified distinct tRNA signatures associated with mild symptoms versus severe COVID-19 manifestations requiring hospitalization. These results highlight the utility of host tRNA properties as biomarkers for the clinical outcome of SARS-CoV-2.

9.
Lancet Microbe ; 3(9): e652-e662, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35803292

RESUMEN

BACKGROUND: A crucial barrier to the routine application of whole-genome sequencing (WGS) for infection prevention is the insufficient criteria for determining whether a genomic linkage is consistent with transmission within the facility. We evaluated the use of single-nucleotide variant (SNV) thresholds, as well as a novel threshold-free approach, for inferring transmission linkages in a high-transmission setting. METHODS: We did a retrospective genomic epidemiology analysis of samples previously collected in the context of an intervention study at a long-term acute care hospital in the USA. We performed WGS on 435 isolates of Klebsiella pneumoniae harbouring the blaKPC carbapenemase (KPC-Kp) collected from 256 patients through admission and surveillance culturing (once every 2 weeks) of almost every patient who was admitted to hospital over a 1-year period. FINDINGS: Our analysis showed that the standard approach of using an SNV threshold to define transmission would lead to false-positive and false-negative inferences. False-positive inferences were driven by the frequent importation of closely related strains, which were presumably linked via transmission at connected health-care facilities. False-negative inferences stemmed from the diversity of colonising populations that were spread among patients, with multiple examples of hypermutator strain emergence within patients and, as a result, putative transmission links separated by large genetic distances. Motivated by limitations of an SNV threshold, we implemented a novel threshold-free transmission cluster inference approach, in which each of the acquired KPC-Kp isolates were linked back to the imported KPC-Kp isolate with which it shared the most variants. This approach yielded clusters that varied in levels of genetic diversity but where 105 (81%) of 129 unique strain acquisition events were associated with epidemiological links in the hospital. Of 100 patients who acquired KPC-Kp isolates that were included in a cluster, 47 could be linked to a single patient who was positive for KPC-Kp at admission, compared with 31 and 25 using 10 SNV and 20 SNV thresholds, respectively. Holistic examination of clusters highlighted extensive variation in the magnitude of onward transmission stemming from more than 100 importation events and revealed patterns in cluster propagation that could inform improvements to infection prevention strategies. INTERPRETATION: Our results show how the integration of culture surveillance data into genomic analyses can overcome limitations of cluster detection based on SNV-thresholds and improve the ability to track pathways of pathogen transmission in health-care settings. FUNDING: US Center for Disease Control and Prevention and University of Michigan.


Asunto(s)
Infecciones por Klebsiella , Brotes de Enfermedades , Genómica , Humanos , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae/genética , Estudios Retrospectivos
10.
Mol Ecol Resour ; 22(5): 1786-1802, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35068060

RESUMEN

By offering extremely long contiguous characterization of individual DNA molecules, rapidly emerging long-read sequencing strategies offer comprehensive insights into the organization of genetic information in genomes and metagenomes. However, successful long-read sequencing experiments demand high concentrations of highly purified DNA of high molecular weight (HMW), which limits the utility of established DNA extraction kits designed for short-read sequencing. The challenges associated with input DNA quality intensify further when working with complex environmental samples of low microbial biomass, which requires new protocols that are tailored to study metagenomes with long-read sequencing. Here, we use human tongue scrapings to benchmark six HMW DNA extraction strategies that are based on commercially available kits, phenol-chloroform (PC) extraction and agarose encasement followed by agarase digestion. A typical end goal of HMW DNA extractions is to obtain the longest possible reads during sequencing, which is often achieved by PC extractions, as demonstrated in sequencing of cultured cells. Yet our analyses that consider overall read-size distribution, assembly performance and the number of circularized elements found in sequencing results suggest that column-based kits with enzyme supplementation, rather than PC methods, may be more appropriate for long-read sequencing of metagenomes.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Metagenoma , ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Peso Molecular , Análisis de Secuencia de ADN/métodos
11.
Genome Biol ; 22(1): 330, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34872593

RESUMEN

Pseudouridine (Ψ) is an abundant mRNA modification in mammalian transcriptome, but its functions have remained elusive due to the difficulty of transcriptome-wide mapping. We develop a nanopore native RNA sequencing method for quantitative Ψ prediction (NanoPsu) that utilizes native content training, machine learning modeling, and single-read linkage analysis. Biologically, we find interferon inducible Ψ modifications in interferon-stimulated gene transcripts which are consistent with a role of Ψ in enabling efficacy of mRNA vaccines.


Asunto(s)
Interferones , Nanoporos , Seudouridina/genética , Seudouridina/metabolismo , ARN Mensajero/genética , Animales , Bacterias , Caenorhabditis elegans , Drosophila , Perfilación de la Expresión Génica/métodos , Células HEK293 , Humanos , Aprendizaje Automático , ARN , Procesamiento Postranscripcional del ARN , Análisis de Secuencia de ARN/métodos , Transcriptoma
12.
Genome Biol ; 21(1): 292, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33323122

RESUMEN

INTRODUCTION: Microbial residents of the human oral cavity have long been a major focus of microbiology due to their influence on host health and intriguing patterns of site specificity amidst the lack of dispersal limitation. However, the determinants of niche partitioning in this habitat are yet to be fully understood, especially among taxa that belong to recently discovered branches of microbial life. RESULTS: Here, we assemble metagenomes from tongue and dental plaque samples from multiple individuals and reconstruct 790 non-redundant genomes, 43 of which resolve to TM7, a member of the Candidate Phyla Radiation, forming six monophyletic clades that distinctly associate with either plaque or tongue. Both pangenomic and phylogenomic analyses group tongue-specific clades with other host-associated TM7 genomes. In contrast, plaque-specific TM7 group with environmental TM7 genomes. Besides offering deeper insights into the ecology, evolution, and mobilome of cryptic members of the oral microbiome, our study reveals an intriguing resemblance between dental plaque and non-host environments indicated by the TM7 evolution, suggesting that plaque may have served as a stepping stone for environmental microbes to adapt to host environments for some clades of microbes. Additionally, we report that prophages are widespread among oral-associated TM7, while absent from environmental TM7, suggesting that prophages may have played a role in adaptation of TM7 to the host environment. CONCLUSIONS: Our data illuminate niche partitioning of enigmatic members of the oral cavity, including TM7, SR1, and GN02, and provide genomes for poorly characterized yet prevalent members of this biome, such as uncultivated Flavobacteriaceae.


Asunto(s)
Marcadores Genéticos , Metagenoma , Microbiota/genética , Boca/microbiología , Adaptación Fisiológica , Adulto , Bacterias/genética , Femenino , Genoma Bacteriano , Humanos , Secuencias Repetitivas Esparcidas , Masculino , Metagenómica , Persona de Mediana Edad , Filogenia , ARN Ribosómico 16S
13.
Infect Control Hosp Epidemiol ; 41(10): 1162-1168, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32624030

RESUMEN

OBJECTIVE: Cohorting patients who are colonized or infected with multidrug-resistant organisms (MDROs) protects uncolonized patients from acquiring MDROs in healthcare settings. The potential for cross transmission within the cohort and the possibility of colonized patients acquiring secondary isolates with additional antibiotic resistance traits is often neglected. We searched for evidence of cross transmission of KPC+ Klebsiella pneumoniae (KPC-Kp) colonization among cohorted patients in a long-term acute-care hospital (LTACH), and we evaluated the impact of secondary acquisitions on resistance potential. DESIGN: Genomic epidemiological investigation. SETTING: A high-prevalence LTACH during a bundled intervention that included cohorting KPC-Kp-positive patients. METHODS: Whole-genome sequencing (WGS) and location data were analyzed to identify potential cases of cross transmission between cohorted patients. RESULTS: Secondary KPC-Kp isolates from 19 of 28 admission-positive patients were more closely related to another patient's isolate than to their own admission isolate. Of these 19 cases, 14 showed strong genomic evidence for cross transmission (<10 single nucleotide variants or SNVs), and most of these patients occupied shared cohort floors (12 patients) or rooms (4 patients) at the same time. Of the 14 patients with strong genomic evidence of acquisition, 12 acquired antibiotic resistance genes not found in their primary isolates. CONCLUSIONS: Acquisition of secondary KPC-Kp isolates carrying distinct antibiotic resistance genes was detected in nearly half of cohorted patients. These results highlight the importance of healthcare provider adherence to infection prevention protocols within cohort locations, and they indicate the need for future studies to assess whether multiple-strain acquisition increases risk of adverse patient outcomes.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Genómica , Hospitales , Humanos , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae/genética , beta-Lactamasas/genética
14.
Nat Commun ; 10(1): 3153, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31300646

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Infect Control Hosp Epidemiol ; 40(5): 559-565, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30890193

RESUMEN

OBJECTIVE: We assessed the impact of personal protective equipment (PPE) doffing errors on healthcare worker (HCW) contamination with multidrug-resistant organisms (MDROs). DESIGN: Prospective, observational study. SETTING: The study was conducted at 4 adult ICUs at 1 tertiary-care teaching hospital. PARTICIPANTS: HCWs who cared for patients on contact precautions for methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci, or multidrug-resistant gram-negative bacilli were enrolled. Samples were collected from standardized areas of patient body, garb sites, and high-touch environmental surfaces in patient rooms. HCW hands, gloves, PPE, and equipment were sampled before and after patient interaction. Research personnel observed PPE doffing and coded errors based on CDC guidelines. RESULTS: We enrolled 125 HCWs; most were nurses (66.4%) or physicians (19.2%). During the study, 95 patients were on contact precautions for MRSA. Among 5,093 cultured sites (HCW, patient, environment), 652 (14.7%) yielded the target MDRO. Moreover, 45 HCWs (36%) were contaminated with the target MDRO after patient interactions, including 4 (3.2%) on hands and 38 (30.4%) on PPE. Overall, 49 HCWs (39.2%) made multiple doffing errors and were more likely to have contaminated clothes following a patient interaction (risk ratio [RR], 4.69; P = .04). All 4 HCWs with hand contamination made doffing errors. The risk of hand contamination was higher when gloves were removed before gowns during PPE doffing (RR, 11.76; P = .025). CONCLUSION: When caring for patients on CP for MDROs, HCWs appear to have differential risk for hand contamination based on their method of doffing PPE. An intervention as simple as reinforcing the preferred order of doffing may reduce HCW contamination with MDROs.


Asunto(s)
Infección Hospitalaria/transmisión , Contaminación de Equipos/estadística & datos numéricos , Personal de Salud/estadística & datos numéricos , Control de Infecciones/métodos , Errores Médicos/estadística & datos numéricos , Ropa de Protección , Adulto , Anciano , Chicago/epidemiología , Infección Hospitalaria/microbiología , Infección Hospitalaria/prevención & control , Farmacorresistencia Bacteriana Múltiple , Contaminación de Equipos/prevención & control , Femenino , Guantes Protectores , Desinfección de las Manos , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Centros de Atención Terciaria , Adulto Joven
16.
Nat Commun ; 10(1): 1051, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837458

RESUMEN

Wolbachia is a genus of obligate intracellular bacteria found in nematodes and arthropods worldwide, including insect vectors that transmit dengue, West Nile, and Zika viruses. Wolbachia's unique ability to alter host reproductive behavior through its temperate bacteriophage WO has enabled the development of new vector control strategies. However, our understanding of Wolbachia's mobilome beyond its bacteriophages is incomplete. Here, we reconstruct near-complete Wolbachia genomes from individual ovary metagenomes of four wild Culex pipiens mosquitoes captured in France. In addition to viral genes missing from the Wolbachia reference genome, we identify a putative plasmid (pWCP), consisting of a 9.23-kbp circular element with 14 genes. We validate its presence in additional Culex pipiens mosquitoes using PCR, long-read sequencing, and screening of existing metagenomes. The discovery of this previously unrecognized extrachromosomal element opens additional possibilities for genetic manipulation of Wolbachia.


Asunto(s)
Culex/microbiología , Genoma Bacteriano/genética , Metagenoma/genética , Plásmidos/genética , Wolbachia/genética , Animales , Bacteriófagos/genética , Femenino , Francia , Interacciones Microbiota-Huesped/genética , Metagenómica/métodos , Mosquitos Vectores/microbiología , Ovario/microbiología , Análisis de Secuencia de ADN , Simbiosis/genética , Wolbachia/virología
17.
Clin Infect Dis ; 68(12): 2053-2059, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-30239622

RESUMEN

BACKGROUND: An association between increased relative abundance of specific bacterial taxa in the intestinal microbiota and bacteremia has been reported in some high-risk patient populations. METHODS: We collected weekly rectal swab samples from patients at 1 long-term acute care hospital (LTACH) in Chicago from May 2015 to May 2016. Samples positive for Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae (KPC-Kp) by polymerase chain reaction and culture underwent 16S rRNA gene sequence analysis; relative abundance of the operational taxonomic unit containing KPC-Kp was determined. Receiver operator characteristic (ROC) curves were constructed using results from the sample with highest relative abundance of KPC-Kp from each patient admission, excluding samples collected after KPC-Kp bacteremia. Cox regression analysis was performed to evaluate risk factors associated with time to achieve KPC-Kp relative abundance thresholds calculated by ROC curve analysis. RESULTS: We collected 2319 samples from 562 admissions (506 patients); KPC-Kp colonization was detected in 255 (45.4%) admissions and KPC-Kp bacteremia in 11 (4.3%). A relative abundance cutoff of 22% predicted KPC-Kp bacteremia with sensitivity 73%, specificity 72%, and relative risk 4.2 (P = .01). In a multivariable Cox regression model adjusted for age, Charlson comorbidity index, and medical devices, carbapenem receipt was associated with achieving the 22% relative abundance threshold (P = .044). CONCLUSION: Carbapenem receipt was associated with increased hazard for high relative abundance of KPC-Kp in the gut microbiota. Increased relative abundance of KPC-Kp was associated with KPC-Kp bacteremia. Whether bacteremia arose directly from bacterial translocation or indirectly from skin contamination followed by bloodstream invasion remains to be determined.


Asunto(s)
Bacteriemia , Proteínas Bacterianas/genética , Infección Hospitalaria/epidemiología , Microbioma Gastrointestinal , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , beta-Lactamasas/genética , Adulto , Anciano , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/biosíntesis , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Femenino , Hospitales , Humanos , Infecciones por Klebsiella/tratamiento farmacológico , Klebsiella pneumoniae/efectos de los fármacos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Curva ROC , beta-Lactamasas/biosíntesis
19.
Open Forum Infect Dis ; 5(8): ofy190, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30151415

RESUMEN

BACKGROUND: Identification of gut microbiota features associated with antibiotic-resistant bacterial colonization may reveal new infection prevention targets. METHODS: We conducted a matched, case-control study of long-term acute care hospital (LTACH) patients to identify gut microbiota and clinical features associated with colonization by Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae (KPC-Kp), an urgent antibiotic resistance threat. Fecal or rectal swab specimens were collected and tested for KPC-Kp; 16S rRNA gene-based sequencing was performed. Comparisons were made between cases and controls in calibration and validation subsamples using microbiota similarity indices, logistic regression, and unit-weighted predictive models. RESULTS: Case (n = 32) and control (n = 99) patients had distinct fecal microbiota communities, but neither microbiota diversity nor inherent clustering into community types distinguished case and control specimens. Comparison of differentially abundant operational taxonomic units (OTUs) revealed 1 OTU associated with case status in both calibration (n = 51) and validation (n = 80) subsamples that matched the canonical KPC-Kp strain ST258. Permutation analysis using the presence or absence of OTUs and hierarchical logistic regression identified 2 OTUs (belonging to genus Desulfovibrio and family Ruminococcaceae) associated with KPC-Kp colonization. Among clinical variables, the presence of a decubitus ulcer alone was independently and consistently associated with case status. Combining the presence of the OTUs Desulfovibrio and Ruminococcaceae with decubitus ulcer increased the likelihood of KPC-Kp colonization to >38% in a unit-weighted predictive model. CONCLUSIONS: We identified microbiota and clinical features that distinguished KPC-Kp gut colonization in LTACH patients, a population particularly susceptible to KPC-Kp infection. These features may warrant further investigation as markers of risk for KPC-Kp colonization.

20.
Infect Control Hosp Epidemiol ; 39(4): 405-411, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29493475

RESUMEN

BACKGROUND Bathing intensive care unit (ICU) patients with 2% chlorhexidine gluconate (CHG)-impregnated cloths decreases the risk of healthcare-associated bacteremia and multidrug-resistant organism transmission. Hospitals employ different methods of CHG bathing, and few studies have evaluated whether those methods yield comparable results. OBJECTIVE To determine whether 3 different CHG skin cleansing methods yield similar residual CHG concentrations and bacterial densities on skin. DESIGN Prospective, randomized 2-center study with blinded assessment. PARTICIPANTS AND SETTING Healthcare personnel in surgical ICUs at 2 tertiary-care teaching hospitals in Chicago, Illinois, and Boston, Massachusetts, from July 2015 to January 2016. INTERVENTION Cleansing skin of one forearm with no-rinse 2% CHG-impregnated polyester cloth (method A) versus 4% CHG liquid cleansing with rinsing on the contralateral arm, applied with either non-antiseptic-impregnated cellulose/polyester cloth (method B) or cotton washcloth dampened with sterile water (method C). RESULTS In total, 63 participants (126 forearms) received method A on 1 forearm (n=63). On the contralateral forearm, 33 participants received method B and 30 participants received method C. Immediately and 6 hours after cleansing, method A yielded the highest residual CHG concentrations (2500 µg/mL and 1250 µg/mL, respectively) and lowest bacterial densities compared to methods B or C (P<.001). CONCLUSION In healthy volunteers, cleansing with 2% CHG-impregnated cloths yielded higher residual CHG concentrations and lower bacterial densities than cleansing with 4% CHG liquid applied with either of 2 different cloth types and followed by rinsing. The relevance of these differences to clinical outcomes remains to be determined. Infect Control Hosp Epidemiol 2018;39:405-411.


Asunto(s)
Bacteriemia , Baños , Clorhexidina/análogos & derivados , Infección Hospitalaria , Transmisión de Enfermedad Infecciosa/prevención & control , Control de Infecciones/métodos , Adulto , Antiinfecciosos Locales/farmacología , Bacteriemia/microbiología , Bacteriemia/prevención & control , Baños/métodos , Baños/normas , Clorhexidina/farmacología , Cuidados Críticos/métodos , Infección Hospitalaria/microbiología , Infección Hospitalaria/prevención & control , Femenino , Humanos , Masculino , Piel/microbiología , Cuidados de la Piel/métodos , Cuidados de la Piel/normas , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...