Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Biol Chem ; : 107443, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838773

RESUMEN

Functional variants of the gene for the cytokine macrophage migration inhibitory factor (MIF) are defined by a 4-nucleotide promoter microsatellite (-794 CATT5-8, rs5844572) and confer risk for autoimmune, infectious, and oncologic diseases. We describe herein the discovery of a prototypic, small molecule inhibitor of MIF transcription with selectivity for high microsatellite repeat number and correspondingly high gene expression. Utilizing a high-throughput luminescent proximity screen, we identify 1-carbomethoxy-5-formyl-4,6,8-trihydroxyphenazine (CMFT) to inhibit the functional interaction between the transcription factor ICBP90 (a.k.a. UHRF1) and the MIF -794 CATT5-8 promoter microsatellite. CMFT inhibits MIF mRNA expression in a -794 CATT5-8 length-dependent manner with an IC50 of 470 nM, and preferentially reduces ICBP90-dependent MIF mRNA and protein expression in high-genotypic versus low-genotypic MIF - expressing macrophages. RNA expression analysis also showed CMFT to downregulate MIF-dependent, inflammatory gene expression with little evidence of off-target metabolic toxicity. These findings provide proof-of-concept for advancing the pharmacogenomic development of precision-based MIF inhibitors for diverse autoimmune and inflammatory conditions.

2.
Mol Med ; 30(1): 43, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539088

RESUMEN

BACKGROUND: Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has been implicated in multiple inflammatory and non-inflammatory diseases, including liver injury induced by acetaminophen (APAP) overdose. Multiple small molecule inhibitors of MIF have been described, including the clinically available anti-rheumatic drug T-614 (iguratimod); however, this drug's mode of inhibition has not been fully investigated. METHODS: We conducted in vitro testing including kinetic analysis and protein crystallography to elucidate the interactions between MIF and T-614. We also performed in vivo experiments testing the efficacy of T-614 in a murine model of acetaminophen toxicity. We analyzed survival in lethal APAP overdose with and without T-614 and using two different dosing schedules of T-614. We also examined MIF and MIF inhibition effects on hepatic hydrogen peroxide (H2O2) as a surrogate of oxidative stress in non-lethal APAP overdose. RESULTS: Kinetic analysis was consistent with a non-competitive type of inhibition and an inhibition constant (Ki) value of 16 µM. Crystallographic analysis revealed that T-614 binds outside of the tautomerase active site of the MIF trimer, with only the mesyl group of the molecule entering the active site pocket. T-614 improved survival in lethal APAP overdose when given prophylactically, but this protection was not observed when the drug was administered late (6 h after APAP). T-614 also decreased hepatic hydrogen peroxide concentrations during non-lethal APAP overdose in a MIF-dependent fashion. CONCLUSIONS: T-614 is an allosteric inhibitor of MIF that prevented death and decreased hepatic hydrogen peroxide concentrations when given prophylactically in a murine model of acetaminophen overdose. Further studies are needed to elucidate the mechanistic role of MIF in APAP toxicity.


Asunto(s)
Benzopiranos , Enfermedad Hepática Inducida por Sustancias y Drogas , Cromonas , Factores Inhibidores de la Migración de Macrófagos , Sulfonamidas , Ratones , Animales , Acetaminofén/efectos adversos , Peróxido de Hidrógeno/metabolismo , Modelos Animales de Enfermedad , Cinética , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Estrés Oxidativo , Hígado/metabolismo
3.
Sci Signal ; 16(812): eadg2621, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37988455

RESUMEN

Mammalian macrophage migration inhibitory factor (MIF) and its paralog, D-dopachrome tautomerase, are multifunctional inflammatory cytokines. Plants have orthologous MIF and D-dopachrome tautomerase-like (MDL) proteins that mimic some of the effects of MIF on immune cells in vitro. We explored the structural and functional similarities between the three Arabidopsis thaliana MDLs and MIF. X-ray crystallography of the MDLs revealed high structural similarity between MDL and MIF homotrimers and suggested a potential explanation for the lack of tautomerase activity in the MDLs. MDL1 and MDL2 interacted with each other and with MIF in vitro, in yeast, and in plant leaves and formed hetero-oligomeric complexes with MIF in vitro. The MDLs stimulated signaling through the MIF receptors CXCR2 or CXCR4 and enhanced the responses to MIF in a yeast reporter system, in human neutrophils, and in human lung epithelial cells. Pharmacological inhibitors that disrupted MIF activity or prevented the formation of MIF-MDL hetero-oligomers blocked the observed synergism. These findings demonstrate that MDLs can enhance cellular responses to MIF, which may have functional implications in tissues exposed to MDLs from the diet or environment.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos , Animales , Humanos , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/química , Proteínas de Plantas , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Saccharomyces cerevisiae/metabolismo , Neutrófilos/metabolismo , Mamíferos/metabolismo , Oxidorreductasas Intramoleculares/genética
4.
J Biol Chem ; 299(6): 104729, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37080391

RESUMEN

The macrophage migration inhibitory factor (MIF) protein family consists of MIF and D-dopachrome tautomerase (also known as MIF-2). These homologs share 34% sequence identity while maintaining nearly indistinguishable tertiary and quaternary structure, which is likely a major contributor to their overlapping functions, including the binding and activation of the cluster of differentiation 74 (CD74) receptor to mediate inflammation. Previously, we investigated a novel allosteric site, Tyr99, that modulated N-terminal catalytic activity in MIF through a "pathway" of dynamically coupled residues. In a comparative study, we revealed an analogous allosteric pathway in MIF-2 despite its unique primary sequence. Disruptions of the MIF and MIF-2 N termini also diminished CD74 activation at the C terminus, though the receptor activation site is not fully defined in MIF-2. In this study, we use site-directed mutagenesis, NMR spectroscopy, molecular simulations, in vitro and in vivo biochemistry to explore the putative CD74 activation region of MIF-2 based on homology to MIF. We also confirm its reciprocal structural coupling to the MIF-2 allosteric site and N-terminal enzymatic site. Thus, we provide further insight into the CD74 activation site of MIF-2 and its allosteric coupling for immunoregulation.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos , Humanos , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Sitios de Unión , Inflamación , Antígenos de Diferenciación de Linfocitos B/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo
5.
Comput Struct Biotechnol J ; 21: 1066-1076, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36688026

RESUMEN

The receptor-binding domains (RBDs) of the SARS-CoV-2 spike trimer exhibit "up" and "down" conformations often targeted by neutralizing antibodies. Only in the "up" configuration can RBDs bind to the ACE2 receptor of the host cell and initiate the process of viral multiplication. Here, we identify a lead compound (3-oxo-valproate-coenzyme A conjugate or Val-CoA) that stabilizes the spike trimer with RBDs in the down conformation. Val-CoA interacts with three R408 residues, one from each RBD, which significantly reduces the inter-subunit R408-R408 distance by ∼ 13 Å and closes the central pore formed by the three RBDs. Experimental evidence is presented that R408 is part of a triggering mechanism that controls the prefusion to postfusion state transition of the spike trimer. By stabilizing the RBDs in the down configuration, this and other related compounds can likely attenuate viral transmission. The reported findings for binding of Val-CoA to the spike trimer suggest a new approach for the design of allosteric antiviral drugs that do not have to compete for specific virus-receptor interactions but instead hinder the conformational motion of viral membrane proteins essential for interaction with the host cell. Here, we introduce an approach to target the spike protein by identifying lead compounds that stabilize the RBDs in the trimeric "down" configuration. When these compounds trimerize monomeric RBD immunogens as co-immunogens, they could also induce new types of non-ACE2 blocking antibodies that prevent local cell-to-cell transmission of the virus, providing a novel approach for inhibition of SARS-CoV-2.

6.
J Struct Biol ; 214(4): 107902, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36202310

RESUMEN

The atomic coordinates derived from cryo-electron microscopy (cryo-EM) maps can be inaccurate when the voxel scaling factors are not properly calibrated. Here, we describe a method for correcting relative voxel scaling factors between pairs of cryo-EM maps for the same or similar structures that are expanded or contracted relative to each other. We find that the correction of scaling factors reduces the amplitude differences of Fourier-inverted structure factors from voxel-rescaled maps by up to 20-30%, as shown by two cryo-EM maps of the SARS-CoV-2 spike protein measured at pH 4.0 and pH 8.0. This allows for the calculation of the difference map after properly scaling, revealing differences between the two structures for individual amino acid residues. Unexpectedly, the analysis uncovers two previously overlooked differences of amino acid residues in structures and their local structural changes. Furthermore, we demonstrate the method as applied to two cryo-EM maps of monomeric apo-photosystem II from the cyanobacteria Synechocystis sp. PCC 6803 and Thermosynechococcus elongatus. The resulting difference maps reveal many changes in the peripheral transmembrane PsbX subunit between the two species.


Asunto(s)
COVID-19 , Synechocystis , Humanos , Microscopía por Crioelectrón , SARS-CoV-2
7.
J Biol Chem ; 298(12): 102617, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36272649

RESUMEN

The dual-specificity phosphatases responsible for the inactivation of the mitogen-activated protein kinases (MAPKs) are designated as the MAPK phosphatases (MKPs). We demonstrated previously that MKP5 is regulated through a novel allosteric site suggesting additional regulatory mechanisms of catalysis exist amongst the MKPs. Here, we sought to determine whether the equivalent site within the phosphatase domain of a highly similar MKP family member, MKP7, is also important for phosphatase function. We found that mutation of tyrosine 271 (Y271) in MKP7, which represents the comparable Y435 within the MKP5 allosteric pocket, inhibited MKP7 catalytic activity. Consistent with this, when MKP7 Y271 mutants were overexpressed in cells, the substrates of MKP7, p38 MAPK or JNK, failed to undergo dephosphorylation. The binding efficiency of MKP7 to p38 MAPK and JNK1/2 was also reduced when MKP7 Y271 is mutated. Consistent with reduced MAPK binding, we observed a greater accumulation of nuclear p38 MAPK and JNK when the MKP7 Y271 mutants are expressed in cells as compared with WT MKP7, which sequesters p38 MAPK/JNK in the cytoplasm. Therefore, we propose that Y271 is critical for effective MAPK dephosphorylation through a mechanism whereby binding to this residue precedes engagement of the catalytic site and upon overexpression, MKP7 allosteric site mutants potentiate MAPK signaling. These results provide insight into the regulatory mechanisms of MKP7 catalysis and interactions with the MAPKs. Furthermore, these data support the generality of the MKP allosteric site and provide a basis for small molecule targeting of MKP7.


Asunto(s)
Fosfatasas de Especificidad Dual , Fosfatasas de la Proteína Quinasa Activada por Mitógenos , Proteínas Tirosina Fosfatasas , Catálisis , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas/metabolismo , Humanos , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo
8.
Eur J Med Chem ; 243: 114712, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36116232

RESUMEN

Mitogen-activated protein kinase (MAPK) phosphatase 5 (MKP5) is responsible for regulating the activity of the stress-responsive MAPKs and has been put forth as a potential therapeutic target for a number of diseases, including dystrophic muscle disease a fatal rare disease which has neither a treatment nor cure. In previous work, we identified Compound 1 (3,3-dimethyl-1-((9-(methylthio)-5,6-dihydrothieno[3,4-h]quinazolin-2-yl)thio)butan-2-one) as the lead compound of a novel class of MKP5 inhibitors. In this work, we explore the structure-activity relationship for inhibition of MKP5 through modifications to the scaffold and functional groups present in 1. A series of derivative compounds was designed, synthesized, and evaluated for inhibition of MKP5. In addition, the X-ray crystal structures of six enzyme-inhibitor complexes were solved, further elucidating the necessary requirements for MKP5 inhibition. We found that the parallel-displaced π-π interaction between the inhibitor three-ring core and Tyr435 is critical for modulating potency, and that modifications to the core and functionalization at the C-9 position are essential for ensuring proper positioning of the core for this interaction. These results lay the foundation from which more potent MKP5 allosteric inhibitors can be developed for potential therapeutics towards the treatment of dystrophic muscle disease.


Asunto(s)
Relación Estructura-Actividad
9.
Biochemistry ; 61(18): 1966-1973, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36044776

RESUMEN

Remdesivir is an adenosine analogue that has a cyano substitution in the C1' position of the ribosyl moiety and a modified base structure to stabilize the linkage of the base to the C1' atom with its strong electron-withdrawing cyano group. Within the replication-transcription complex (RTC) of SARS-CoV-2, the RNA-dependent RNA polymerase nsp12 selects remdesivir monophosphate (RMP) over adenosine monophosphate (AMP) for nucleotide incorporation but noticeably slows primer extension after the added RMP of the RNA duplex product is translocated by three base pairs. Cryo-EM structures have been determined for the RTC with RMP at the nucleotide-insertion (i) site or at the i + 1, i + 2, or i + 3 sites after product translocation to provide a structural basis for a delayed-inhibition mechanism by remdesivir. In this study, we applied molecular dynamics (MD) simulations to extend the resolution of structures to the measurable maximum that is intrinsically limited by MD properties of these complexes. Our MD simulations provide (i) a structural basis for nucleotide selectivity of the incoming substrates of remdesivir triphosphate over adenosine triphosphate and of ribonucleotide over deoxyribonucleotide, (ii) new detailed information on hydrogen atoms involved in H-bonding interactions between the enzyme and remdesivir, and (iii) direct information on the catalytically active complex that is not easily captured by experimental methods. Our improved resolution of interatomic interactions at the nucleotide-binding pocket between remedesivir and the polymerase could help to design a new class of anti-SARS-CoV-2 inhibitors.


Asunto(s)
Adenosina Trifosfato , Antivirales , SARS-CoV-2 , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Alanina/química , Antivirales/química , Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus , Desoxirribonucleótidos , Hidrógeno , Nucleótidos , ARN Viral/genética , Ribonucleótidos , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
10.
Front Mol Biosci ; 9: 783669, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252348

RESUMEN

Macrophage migration inhibitory factor (MIF) is an inflammatory protein with various non-overlapping functions. It is not only conserved in mammals, but it is found in parasites, fish, and plants. Human MIF is a homotrimer with an enzymatic cavity between two subunits with Pro1 as a catalytic base, activates the receptors CD74, CXCR2, and CXCR4, has functional interactions in the cytosol, and is reported to be a nuclease. There is a solvent channel down its 3-fold axis with a recently identified gating residue as an allosteric site important for regulating, to different extents, the enzymatic activity and CD74 binding and signaling. In this study we explore the consequence of converting the allosteric residue Tyr99 to cysteine (Y99C) and characterize its crystallographic structure, NMR dynamics, stability, CD74 function, and enzymatic activity. In addition to the homotrimeric variant, we develop strategies for expressing and purifying a heterotrimeric variant consisting of mixed wild type and Y99C for characterization of the allosteric site to provide more insight.

11.
Biochemistry ; 61(6): 424-432, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35199520

RESUMEN

A minimal replication-transcription complex (RTC) of SARS-CoV-2 for synthesis of viral RNAs includes the nsp12 RNA-dependent RNA polymerase and two nsp8 RNA primase subunits for de novo primer synthesis, one nsp8 in complex with its accessory nsp7 subunit and the other without it. The RTC is responsible for faithfully copying the entire (+) sense viral genome from its first 5'-end to the last 3'-end nucleotides through a replication-intermediate (RI) template. The single-stranded (ss) RNA template for the RI is its 33-nucleotide 3'-poly(A) tail adjacent to a well-characterized secondary structure. The ssRNA template for viral transcription is a 5'-UUUAU-3' next to stem-loop (SL) 1'. We analyze the electrostatic potential distribution of the nsp8 subunit within the RTC around the template strand of the primer/template (P/T) RNA duplex in recently published cryo-EM structures to address the priming reaction using the viral poly(A) template. We carried out molecular dynamics (MD) simulations with a P/T RNA duplex, the viral poly(A) template, or a generic ssRNA template. We find evidence that the viral poly(A) template binds similarly to the template strand of the P/T RNA duplex within the RTC, mainly through electrostatic interactions, providing new insights into the priming reaction by the nsp8 subunit within the RTC, which differs significantly from the existing proposal of the nsp7/nsp8 oligomer formed outside the RTC. High-order oligomerization of nsp8 and nsp7 for SARS-CoV observed outside the RTC of SARS-CoV-2 is not found in the RTC and not likely to be relevant to the priming reaction.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Simulación de Dinámica Molecular , ARN Viral/metabolismo , Proteínas no Estructurales Virales/metabolismo
12.
J Clin Invest ; 131(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34850744

RESUMEN

Excessive inflammation drives the progression from sepsis to septic shock. Macrophage migration inhibitory factor (MIF) is of interest because MIF promoter polymorphisms predict mortality in different infections, and anti-MIF antibody improves survival in experimental models when administered 8 hours after infectious insult. The recent description of a second MIF superfamily member, D-dopachrome tautomerase (D-DT/MIF-2), prompted closer investigation of MIF-dependent responses. We subjected Mif-/- and Mif-2-/- mice to polymicrobial sepsis and observed a survival benefit with Mif but not Mif-2 deficiency. Survival was associated with reduced numbers of small peritoneal macrophages (SPMs) that, in contrast to large peritoneal macrophages (LPMs), were recruited into the peritoneal cavity. LPMs produced higher quantities of MIF than SPMs, but SPMs expressed higher levels of inflammatory cytokines and the MIF receptors CD74 and CXCR2. Adoptive transfer of WT SPMs into Mif-/- hosts reduced the protective effect of Mif deficiency in polymicrobial sepsis. Notably, MIF-2 lacks the pseudo-(E)LR motif present in MIF that mediates CXCR2 engagement and SPM migration, supporting a specific role for MIF in the recruitment and accumulation of inflammatory SPMs.


Asunto(s)
Inflamación/metabolismo , Oxidorreductasas Intramoleculares/genética , Factores Inhibidores de la Migración de Macrófagos/genética , Sepsis/metabolismo , Sepsis/microbiología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Oxidorreductasas Intramoleculares/metabolismo , Recuento de Leucocitos , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Macrófagos/metabolismo , Macrófagos Peritoneales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Lavado Peritoneal , Fenotipo , Unión Proteica , RNA-Seq , Sepsis/fisiopatología , Transducción de Señal
13.
FASEB J ; 35(12): e21997, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34719814

RESUMEN

The deadliest complication of infection by Plasmodium parasites, cerebral malaria, accounts for the majority of malarial fatalities. Although our understanding of the cellular and molecular mechanisms underlying the pathology remains incomplete, recent studies support the contribution of systemic and neuroinflammation as the cause of cerebral edema and blood-brain barrier (BBB) dysfunction. All Plasmodium species encode an orthologue of the innate cytokine, Macrophage Migration Inhibitory Factor (MIF), which functions in mammalian biology to regulate innate responses. Plasmodium MIF (PMIF) similarly signals through the host MIF receptor CD74, leading to an enhanced inflammatory response. We investigated the PMIF-CD74 interaction in the onset of experimental cerebral malaria (ECM) and liver stage Plasmodium development by using a combination of CD74 deficient (Cd74-/- ) hosts and PMIF deficient parasites. Cd74-/- mice were found to be protected from ECM and the protection was associated with the inability of brain microvessels to present parasite antigen to sequestered and pathogenic Plasmodium-specific CD8+ T cells. Infection of WT hosts with PMIF-deficient sporozoites or infection of Cd74-/- hosts with WT sporozoites impacted the survival of infected hepatocytes and subsequently reduced blood-stage associated inflammation, contributing to protection from ECM. We recapitulated these finding with a novel pharmacologic PMIF-selective antagonist that reduced PMIF/CD74 signaling and fully protected mice from ECM. These findings reveal a conserved mechanism for Plasmodium usurpation of host CD74 signaling and suggest a tractable approach for new pharmacologic intervention.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B/química , Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad Clase II/química , Inflamación/prevención & control , Hígado/patología , Factores Inhibidores de la Migración de Macrófagos/antagonistas & inhibidores , Malaria Cerebral/prevención & control , Plasmodium berghei/fisiología , Animales , Antígenos de Diferenciación de Linfocitos B/fisiología , Antígenos de Histocompatibilidad Clase II/fisiología , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Hígado/inmunología , Hígado/parasitología , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Malaria Cerebral/etiología , Malaria Cerebral/metabolismo , Malaria Cerebral/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
14.
Comput Struct Biotechnol J ; 19: 5019-5028, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34540146

RESUMEN

The membrane fusion mechanism of SARS-CoV-2 offers an attractive target for the development of small molecule antiviral inhibitors. Fusion involves an initial binding of the crown-like trimeric spike glycoproteins of SARS-CoV-2 to the receptor angiotensin II-converting enzyme 2 (ACE2) on the permissive host cellular membrane and a prefusion to post-fusion conversion of the spike trimer. During this conversion, the fusion peptides of the spike trimer are inserted into the host membrane to bring together the host and viral membranes for membrane fusion in highly choreographic events. However, geometric constraints due to interactions with the membranes remain poorly understood. In this study, we build structural models of super-complexes of spike trimer/ACE2 dimers based on the molecular structures of the ACE2/neutral amino acid transporter B(0)AT heterodimer. We determine the conformational constraints due to the membrane geometry on the enzymatic activity of ACE2 and on the viral fusion process. Furthermore, we find that binding three ACE2 dimers per spike trimer is essential to open the central pore as necessary for triggering productive membrane fusion through an elongation of the central stalk. The reported findings thus provide valuable insights for targeting the membrane fusion mechanism for drug design at the molecular level.

15.
J Biol Chem ; 297(3): 101061, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34384784

RESUMEN

The macrophage migration inhibitory factor (MIF) family of cytokines contains multiple ligand-binding sites and mediates immunomodulatory processes through an undefined mechanism(s). Previously, we reported a dynamic relay connecting the MIF catalytic site to an allosteric site at its solvent channel. Despite structural and functional similarity, the MIF homolog D-dopachrome tautomerase (also called MIF-2) has low sequence identity (35%), prompting the question of whether this dynamic regulatory network is conserved. Here, we establish the structural basis of an allosteric site in MIF-2, showing with solution NMR that dynamic communication is preserved in MIF-2 despite differences in the primary sequence. X-ray crystallography and NMR detail the structural consequences of perturbing residues in this pathway, which include conformational changes surrounding the allosteric site, despite global preservation of the MIF-2 fold. Molecular simulations reveal MIF-2 to contain a comparable hydrogen bond network to that of MIF, which was previously hypothesized to influence catalytic activity by modulating the strength of allosteric coupling. Disruption of the allosteric relay by mutagenesis also attenuates MIF-2 enzymatic activity in vitro and the activation of the cluster of differentiation 74 receptor in vivo, highlighting a conserved point of control for nonoverlapping functions in the MIF superfamily.


Asunto(s)
Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Sitio Alostérico/fisiología , Secuencia de Aminoácidos/genética , Antígenos de Diferenciación de Linfocitos B/inmunología , Antígenos de Diferenciación de Linfocitos B/metabolismo , Sitios de Unión/genética , Dominio Catalítico/genética , Cristalografía por Rayos X , Citocinas/inmunología , Citocinas/metabolismo , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Oxidorreductasas Intramoleculares/fisiología , Factores Inhibidores de la Migración de Macrófagos/fisiología , Unión Proteica/genética , Relación Estructura-Actividad
16.
Biochemistry ; 60(24): 1869-1875, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34110129

RESUMEN

Remdesivir is an antiviral drug initially designed against the Ebola virus. The results obtained with it both in biochemical studies in vitro and in cell line assays in vivo were very promising, but it proved to be ineffective in clinical trials. Remdesivir exhibited far better efficacy when repurposed against SARS-CoV-2. The chemistry that accounts for this difference is the subject of this study. Here, we examine the hypothesis that remdesivir monophosphate (RMP)-containing RNA functions as a template at the polymerase site for the second run of RNA synthesis, and as mRNA at the decoding center for protein synthesis. Our hypothesis is supported by the observation that RMP can be incorporated into RNA by the RNA-dependent RNA polymerases (RdRps) of both viruses, although some of the incorporated RMPs are subsequently removed by exoribonucleases. Furthermore, our hypothesis is consistent with the fact that RdRp of SARS-CoV-2 selects RMP for incorporation over AMP by 3-fold in vitro, and that RMP-added RNA can be rapidly extended, even though primer extension is often paused when the added RMP is translocated at the i + 3 position (with i the nascent base pair at an initial insertion site of RMP) or when the concentrations of the subsequent nucleoside triphosphates (NTPs) are below their physiological concentrations. These observations have led to the hypothesis that remdesivir might be a delayed chain terminator. However, that hypothesis is challenged under physiological concentrations of NTPs by the observation that approximately three-quarters of RNA products efficiently overrun the pause.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Ebolavirus/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Alanina/genética , Alanina/metabolismo , Antivirales/metabolismo , Emparejamiento Base , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Inhibidores Enzimáticos/metabolismo , Modelos Moleculares , Biosíntesis de Proteínas/efectos de los fármacos , ARN/genética , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo
17.
PLoS One ; 15(11): e0242725, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33253191

RESUMEN

Pre-mRNA splicing is critical for achieving required amounts of a transcript at a given time and for regulating production of encoded protein. A given pre-mRNA may be spliced in many ways, or not at all, giving rise to multiple gene products. Numerous splicing factors are recruited to pre-mRNA splice sites to ensure proper splicing. One such factor, the 60 kDa poly(U)-binding splicing factor (PUF60), is recruited to sites that are not always spliced, but rather function as alternative splice sites. In this study, we characterized the interaction of PUF60 with a splice site from the adenovirus major late promoter (the AdML 3' splice site, AdML3'). We found that the PUF60-AdML3' dissociation constants are in the micromolar range, with the binding affinity predominantly provided by PUF60's two central RNA recognition motifs (RRMs). A 1.95 Å crystal structure of the two PUF60 RRMs in complex with AdML3' revealed a dimeric organization placing two stretches of nucleic acid tracts in opposing directionalities, which can cause looping of nucleic acid and explain how PUF60 affects pre-mRNA geometry to effect splicing. Solution characterization of this complex by light-scattering and UV/Vis spectroscopy suggested a potential 2:1 (PUF602:AdML3') stoichiometry, consistent with the crystal structure. This work defines the sequence specificity of the alternative splicing factor PUF60 at the pre-mRNA 3' splice site. Our observations suggest that control of pre-mRNA directionality is important in the early stage of spliceosome assembly, and advance our understanding of the molecular mechanism by which alternative and constitutive splicing factors differentiate among 3' splice sites.


Asunto(s)
Adenoviridae/química , Intrones , Regiones Promotoras Genéticas , Sitios de Empalme de ARN , Factores de Empalme de ARN/química , ARN Viral/química , Proteínas Represoras/química , Adenoviridae/metabolismo , Cristalografía por Rayos X , Humanos , Factores de Empalme de ARN/metabolismo , ARN Viral/metabolismo , Proteínas Represoras/metabolismo
18.
Acta Crystallogr D Struct Biol ; 76(Pt 10): 1033-1049, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33021505

RESUMEN

CXCL13 is the cognate chemokine agonist of CXCR5, a class A G-protein-coupled receptor (GPCR) that is essential for proper humoral immune responses. Using a `methionine scanning' mutagenesis method on the N-terminus of CXCL13, which is the chemokine signaling region, it was shown that minor length alterations and side-chain substitutions still result in CXCR5 activation. This observation indicates that the orthosteric pocket of CXCR5 can tolerate these changes without severely affecting the activity. The introduction of bulk on the ligand was well tolerated by the receptor, whereas a loss of contacts was less tolerated. Furthermore, two crystal structures of CXCL13 mutants were solved, both of which represent the first uncomplexed structures of the human protein. These structures were stabilized by unique interactions formed by the N-termini of the ligands, indicating that CXCL13 exhibits substantial N-terminal flexibility while the chemokine core domain remains largely unchanged. Additionally, it was observed that CXCL13 harbors a large degree of flexibility in the C-terminal extension of the ligand. Comparisons with other published structures of human and murine CXCL13 validate the relative rigidity of the core domain as well as the N- and C-terminal mobilities. Collectively, these mutants and their structures provide the field with additional insights into how CXCL13 interacts with CXCR5.


Asunto(s)
Quimiocina CXCL13 , Receptores CXCR5 , Quimiocina CXCL13/química , Quimiocina CXCL13/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Receptores CXCR5/metabolismo
19.
Sci Signal ; 13(646)2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32843541

RESUMEN

The mitogen-activated protein kinase (MAPK) phosphatases (MKPs) have been considered "undruggable," but their position as regulators of the MAPKs makes them promising therapeutic targets. MKP5 has been suggested as a potential target for the treatment of dystrophic muscle disease. Here, we identified an inhibitor of MKP5 using a p38α MAPK-derived, phosphopeptide-based small-molecule screen. We solved the structure of MKP5 in complex with this inhibitor, which revealed a previously undescribed allosteric binding pocket. Binding of the inhibitor to this pocket collapsed the MKP5 active site and was predicted to limit MAPK binding. Treatment with the inhibitor recapitulated the phenotype of MKP5 deficiency, resulting in activation of p38 MAPK and JNK. We demonstrated that MKP5 was required for TGF-ß1 signaling in muscle and that the inhibitor blocked TGF-ß1-mediated Smad2 phosphorylation. TGF-ß1 pathway antagonism has been proposed for the treatment of dystrophic muscle disease. Thus, allosteric inhibition of MKP5 represents a therapeutic strategy against dystrophic muscle disease.


Asunto(s)
Fosfatasas de Especificidad Dual/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Sitio Alostérico/genética , Secuencia de Aminoácidos , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Fosfatasas de Especificidad Dual/química , Fosfatasas de Especificidad Dual/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Femenino , Humanos , Cinética , Ratones , Ratones Noqueados , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/química , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Unión Proteica/efectos de los fármacos , Homología de Secuencia de Aminoácido , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo
20.
Front Mol Biosci ; 7: 164, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32766282

RESUMEN

CXCL12 activates CXCR4 and is involved in embryogenesis, hematopoiesis, and angiogenesis. It has pathological roles in HIV-1, WHIM disease, cancer, and autoimmune diseases. An antagonist, AMD3100, is used for the release of CD34+ hematopoietic stem cells from the bone marrow for autologous transplantation for lymphoma or multiple myeloma patients. Adverse effects are tolerated due to its short-term treatment, but AMD3100 is cardiotoxic in clinical studies for HIV-1. In an effort to determine whether Saccharomyces cerevisiae expressing a functional human CXCR4 could be used as a platform for identifying a ligand from a library of less ∼1,000 compounds, a high-throughput screening was developed. We report that 2-carboxyphenyl phosphate (fosfosal) up-regulates CXCR4 activation only in the presence of CXCL12. This is the first identification of a compound that increases CXCR4 activity by any mechanism. We mapped the fosfosal binding site on CXCL12, described its mechanism of action, and studied its chemical components, salicylate and phosphate, to conclude that they synergize to achieve the functional effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...