Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 583(7815): 242-248, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32641817

RESUMEN

Enhanced silicate rock weathering (ERW), deployable with croplands, has potential use for atmospheric carbon dioxide (CO2) removal (CDR), which is now necessary to mitigate anthropogenic climate change1. ERW also has possible co-benefits for improved food and soil security, and reduced ocean acidification2-4. Here we use an integrated performance modelling approach to make an initial techno-economic assessment for 2050, quantifying how CDR potential and costs vary among nations in relation to business-as-usual energy policies and policies consistent with limiting future warming to 2 degrees Celsius5. China, India, the USA and Brazil have great potential to help achieve average global CDR goals of 0.5 to 2 gigatonnes of carbon dioxide (CO2) per year with extraction costs of approximately US$80-180 per tonne of CO2. These goals and costs are robust, regardless of future energy policies. Deployment within existing croplands offers opportunities to align agriculture and climate policy. However, success will depend upon overcoming political and social inertia to develop regulatory and incentive frameworks. We discuss the challenges and opportunities of ERW deployment, including the potential for excess industrial silicate materials (basalt mine overburden, concrete, and iron and steel slag) to obviate the need for new mining, as well as uncertainties in soil weathering rates and land-ocean transfer of weathered products.


Asunto(s)
Agricultura , Dióxido de Carbono/aislamiento & purificación , Productos Agrícolas , Sedimentos Geológicos/química , Calentamiento Global/prevención & control , Objetivos , Silicatos/química , Atmósfera/química , Brasil , China , Política Ambiental/economía , Política Ambiental/legislación & jurisprudencia , Calentamiento Global/economía , India , Hierro/aislamiento & purificación , Minería , Política , Probabilidad , Silicatos/aislamiento & purificación , Acero/aislamiento & purificación , Temperatura , Factores de Tiempo , Estados Unidos
2.
Glob Chang Biol ; 26(6): 3658-3676, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32314496

RESUMEN

Land-based enhanced rock weathering (ERW) is a biogeochemical carbon dioxide removal (CDR) strategy aiming to accelerate natural geological processes of carbon sequestration through application of crushed silicate rocks, such as basalt, to croplands and forested landscapes. However, the efficacy of the approach when undertaken with basalt, and its potential co-benefits for agriculture, require experimental and field evaluation. Here we report that amending a UK clay-loam agricultural soil with a high loading (10 kg/m2 ) of relatively coarse-grained crushed basalt significantly increased the yield (21 ± 9.4%, SE) of the important C4 cereal Sorghum bicolor under controlled environmental conditions, without accumulation of potentially toxic trace elements in the seeds. Yield increases resulted from the basalt treatment after 120 days without P- and K-fertilizer addition. Shoot silicon concentrations also increased significantly (26 ± 5.4%, SE), with potential benefits for crop resistance to biotic and abiotic stress. Elemental budgets indicate substantial release of base cations important for inorganic carbon removal and their accumulation mainly in the soil exchangeable pools. Geochemical reactive transport modelling, constrained by elemental budgets, indicated CO2 sequestration rates of 2-4 t CO2 /ha, 1-5 years after a single application of basaltic rock dust, including via newly formed soil carbonate minerals whose long-term fate requires assessment through field trials. This represents an approximately fourfold increase in carbon capture compared to control plant-soil systems without basalt. Our results build support for ERW deployment as a CDR technique compatible with spreading basalt powder on acidic loamy soils common across millions of hectares of western European and North American agriculture.


Asunto(s)
Suelo , Sorghum , Agricultura , Dióxido de Carbono , Polvo , Grano Comestible , Silicatos
3.
New Phytol ; 215(4): 1370-1386, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28643848

RESUMEN

The maximum photosynthetic carboxylation rate (Vcmax ) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global Vcmax distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 PgC yr-1 , 65% of the range of a recent model intercomparison of global GPP. The variation in GPP propagated through to a 27% coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated (r = 0.85-0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand Vcmax variation in the field, particularly in northern latitudes.


Asunto(s)
Dióxido de Carbono/metabolismo , Modelos Biológicos , Fotosíntesis , Carácter Cuantitativo Heredable , Ciclo del Carbono , Internacionalidad , Desarrollo de la Planta , Análisis de Componente Principal , Estaciones del Año , Temperatura
4.
Glob Chang Biol ; 23(8): 3076-3091, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28192628

RESUMEN

Turnover concepts in state-of-the-art global vegetation models (GVMs) account for various processes, but are often highly simplified and may not include an adequate representation of the dominant processes that shape vegetation carbon turnover rates in real forest ecosystems at a large spatial scale. Here, we evaluate vegetation carbon turnover processes in GVMs participating in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT) using estimates of vegetation carbon turnover rate (k) derived from a combination of remote sensing based products of biomass and net primary production (NPP). We find that current model limitations lead to considerable biases in the simulated biomass and in k (severe underestimations by all models except JeDi and VISIT compared to observation-based average k), likely contributing to underestimation of positive feedbacks of the northern forest carbon balance to climate change caused by changes in forest mortality. A need for improved turnover concepts related to frost damage, drought, and insect outbreaks to better reproduce observation-based spatial patterns in k is identified. As direct frost damage effects on mortality are usually not accounted for in these GVMs, simulated relationships between k and winter length in boreal forests are not consistent between different regions and strongly biased compared to the observation-based relationships. Some models show a response of k to drought in temperate forests as a result of impacts of water availability on NPP, growth efficiency or carbon balance dependent mortality as well as soil or litter moisture effects on leaf turnover or fire. However, further direct drought effects such as carbon starvation (only in HYBRID4) or hydraulic failure are usually not taken into account by the investigated GVMs. While they are considered dominant large-scale mortality agents, mortality mechanisms related to insects and pathogens are not explicitly treated in these models.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Bosques , Carbono , Ecosistema , Modelos Teóricos , Árboles
5.
Nat Commun ; 5: 5018, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25318638

RESUMEN

Satellite-derived Normalized Difference Vegetation Index (NDVI), a proxy of vegetation productivity, is known to be correlated with temperature in northern ecosystems. This relationship, however, may change over time following alternations in other environmental factors. Here we show that above 30°N, the strength of the relationship between the interannual variability of growing season NDVI and temperature (partial correlation coefficient RNDVI-GT) declined substantially between 1982 and 2011. This decrease in RNDVI-GT is mainly observed in temperate and arctic ecosystems, and is also partly reproduced by process-based ecosystem model results. In the temperate ecosystem, the decrease in RNDVI-GT coincides with an increase in drought. In the arctic ecosystem, it may be related to a nonlinear response of photosynthesis to temperature, increase of hot extreme days and shrub expansion over grass-dominated tundra. Our results caution the use of results from interannual time scales to constrain the decadal response of plants to ongoing warming.


Asunto(s)
Clima , Ecosistema , Monitoreo del Ambiente/métodos , Temperatura , Regiones Árticas , Simulación por Computador , Sequías , Geografía , Calentamiento Global , Fotosíntesis , Fenómenos Fisiológicos de las Plantas , Plantas , Poaceae , Imágenes Satelitales , Estaciones del Año , Suelo
6.
Proc Natl Acad Sci U S A ; 111(9): 3280-5, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344265

RESUMEN

Future climate change and increasing atmospheric CO2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models. For example, at 4 °C of global land surface warming (510-758 ppm of CO2), vegetation carbon increases by 52-477 Pg C (224 Pg C mean), mainly due to CO2 fertilization of photosynthesis. Simulations agree on large regional increases across much of the boreal forest, western Amazonia, central Africa, western China, and southeast Asia, with reductions across southwestern North America, central South America, southern Mediterranean areas, southwestern Africa, and southwestern Australia. Four vegetation models display discontinuities across 4 °C of warming, indicating global thresholds in the balance of positive and negative influences on productivity and biomass. In contrast to previous global vegetation model studies, we emphasize the importance of uncertainties in projected changes in carbon residence times. We find, when all seven models are considered for one representative concentration pathway × general circulation model combination, such uncertainties explain 30% more variation in modeled vegetation carbon change than responses of net primary productivity alone, increasing to 151% for non-HYBRID4 models. A change in research priorities away from production and toward structural dynamics and demographic processes is recommended.


Asunto(s)
Atmósfera/química , Ciclo del Carbono/fisiología , Dióxido de Carbono/análisis , Carbono/farmacocinética , Cambio Climático , Modelos Teóricos , Plantas/metabolismo , Simulación por Computador , Predicción , Factores de Tiempo , Incertidumbre
7.
Proc Natl Acad Sci U S A ; 111(9): 3233-8, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344270

RESUMEN

The impacts of global climate change on different aspects of humanity's diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 °C above the 1980-2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 °C. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ambiente , Calentamiento Global/estadística & datos numéricos , Modelos Teóricos , Política Pública , Agricultura/estadística & datos numéricos , Simulación por Computador , Ecosistema , Geografía , Calentamiento Global/economía , Humanos , Malaria/epidemiología , Temperatura , Abastecimiento de Agua/estadística & datos numéricos
8.
Philos Trans R Soc Lond B Biol Sci ; 368(1625): 20120376, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23878340

RESUMEN

The African humid tropical biome constitutes the second largest rainforest region, significantly impacts global carbon cycling and climate, and has undergone major changes in functioning owing to climate and land-use change over the past century. We assess changes and trends in CO2 fluxes from 1901 to 2010 using nine land surface models forced with common driving data, and depict the inter-model variability as the uncertainty in fluxes. The biome is estimated to be a natural (no disturbance) net carbon sink (-0.02 kg C m⁻² yr⁻¹ or -0.04 Pg C yr⁻¹, p < 0.05) with increasing strength fourfold in the second half of the century. The models were in close agreement on net CO2 flux at the beginning of the century (σ1901 = 0.02 kg C m⁻² yr⁻¹), but diverged exponentially throughout the century (σ2010 = 0.03 kg C m⁻² yr⁻¹). The increasing uncertainty is due to differences in sensitivity to increasing atmospheric CO2, but not increasing water stress, despite a decrease in precipitation and increase in air temperature. However, the largest uncertainties were associated with the most extreme drought events of the century. These results highlight the need to constrain modelled CO2 fluxes with increasing atmospheric CO2 concentrations and extreme climatic events, as the uncertainties will only amplify in the next century.


Asunto(s)
Lluvia , Árboles , Clima Tropical , África , Dióxido de Carbono/metabolismo , Secuestro de Carbono , Cambio Climático/historia , Historia del Siglo XX , Historia del Siglo XXI , Modelos Biológicos , Árboles/metabolismo
9.
Glob Chang Biol ; 19(7): 2117-32, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23504870

RESUMEN

The purpose of this study was to evaluate 10 process-based terrestrial biosphere models that were used for the IPCC fifth Assessment Report. The simulated gross primary productivity (GPP) is compared with flux-tower-based estimates by Jung et al. [Journal of Geophysical Research 116 (2011) G00J07] (JU11). The net primary productivity (NPP) apparent sensitivity to climate variability and atmospheric CO2 trends is diagnosed from each model output, using statistical functions. The temperature sensitivity is compared against ecosystem field warming experiments results. The CO2 sensitivity of NPP is compared to the results from four Free-Air CO2 Enrichment (FACE) experiments. The simulated global net biome productivity (NBP) is compared with the residual land sink (RLS) of the global carbon budget from Friedlingstein et al. [Nature Geoscience 3 (2010) 811] (FR10). We found that models produce a higher GPP (133 ± 15 Pg C yr(-1) ) than JU11 (118 ± 6 Pg C yr(-1) ). In response to rising atmospheric CO2 concentration, modeled NPP increases on average by 16% (5-20%) per 100 ppm, a slightly larger apparent sensitivity of NPP to CO2 than that measured at the FACE experiment locations (13% per 100 ppm). Global NBP differs markedly among individual models, although the mean value of 2.0 ± 0.8 Pg C yr(-1) is remarkably close to the mean value of RLS (2.1 ± 1.2 Pg C yr(-1) ). The interannual variability in modeled NBP is significantly correlated with that of RLS for the period 1980-2009. Both model-to-model and interannual variation in model GPP is larger than that in model NBP due to the strong coupling causing a positive correlation between ecosystem respiration and GPP in the model. The average linear regression slope of global NBP vs. temperature across the 10 models is -3.0 ± 1.5 Pg C yr(-1) °C(-1) , within the uncertainty of what derived from RLS (-3.9 ± 1.1 Pg C yr(-1) °C(-1) ). However, 9 of 10 models overestimate the regression slope of NBP vs. precipitation, compared with the slope of the observed RLS vs. precipitation. With most models lacking processes that control GPP and NBP in addition to CO2 and climate, the agreement between modeled and observation-based GPP and NBP can be fortuitous. Carbon-nitrogen interactions (only separable in one model) significantly influence the simulated response of carbon cycle to temperature and atmospheric CO2 concentration, suggesting that nutrients limitations should be included in the next generation of terrestrial biosphere models.


Asunto(s)
Ciclo del Carbono , Dióxido de Carbono/análisis , Cambio Climático , Ecosistema , Modelos Teóricos , Poaceae/crecimiento & desarrollo , Filogeografía
10.
New Phytol ; 191(3): 819-827, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21534968

RESUMEN

• Theoretically, communities at or near their equilibrium species number resist entry of new species. Such 'biotic resistance' recently has been questioned because of successful entry of alien species into diverse natural communities. • Data on 10,409 naturalizations of 5350 plant species over 16 sites dispersed globally show exponential distributions both for species over sites and for sites over number of species shared. These exponentials signal a statistical mechanics of species distribution, assuming two conditions. First, species and sites are equivalent, either identical ('neutral') or so complex that the chance a species is in the right place at the right time is vanishingly small ('idiosyncratic'); the range of species and sites in our data disallows a neutral explanation. Secondly, the total number of naturalizations is fixed in any era by a 'regulator'. • Previous correlation of species naturalization rates with net primary productivity over time suggests that the regulator is related to productivity. • We conclude that biotic resistance is a moving ceiling, with resistance controlled by productivity. The general observation that the majority of species occur naturally at only a few sites, and only a few species occur at many sites, now has a quantitative (exponential) character, offering the study of species' distributions a previously unavailable rigor.


Asunto(s)
Biodiversidad , Biomasa , Modelos Biológicos , Desarrollo de la Planta , Dinámica Poblacional , Ecología , Fenómenos Fisiológicos de las Plantas , Densidad de Población
11.
Glob Chang Biol ; 11(12): 2164-2176, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34991285

RESUMEN

Vegetation phenology is affected by climate change and in turn feeds back on climate by affecting the annual carbon uptake by vegetation. To quantify the impact of phenology on terrestrial carbon fluxes, we calibrate a bud-burst model and embed it in the Sheffield dynamic global vegetation model (SDGVM) in order to perform carbon budget calculations. Bud-burst dates derived from the VEGETATION sensor onboard the SPOT-4 satellite are used to calibrate a range of bud-burst models. This dataset has been recently developed using a new methodology based on the normalized difference water index, which is able to distinguish snowmelt from the onset of vegetation activity after winter. After calibration, a simple spring warming model was found to perform as well as more complex models accounting for a chilling requirement, and hence it was used for the carbon flux calculations. The root mean square difference (RMSD) between the calibrated model and the VEGETATION dataset was 6.5 days, and was 6.9 days between the calibrated model and independent ground observations of bud-burst available at nine locations over Siberia. The effects of bud-burst model uncertainties on the carbon budget were evaluated using the SDGVM. The 6.5 days RMSD in the bud-burst date (a 6% variation in the growing season length), treated as a random noise, translates into about 41 g cm-2 yr-1 in net primary production (NPP), which corresponds to 8% of the mean NPP. This is a moderate impact and suggests the calibrated model is accurate enough for carbon budget calculations. In addition to random differences between the calibrated model and VEGETATION data, systematic errors between the calibrated bud-burst model and true ground behaviour may occur, because of bias in the temperature dataset or because the bud-burst detected by VEGETATION is because of some other phenological indicator. A systematic error of 1 day in bud-burst translates into a 10 g cm-2 yr-1 error in NPP (about 2%). Based on the limited available ground data, any systematic error because of the use of VEGETATION data should not lead to significant errors in the calculated carbon flux. In contrast, widely used methods based on the normalized difference vegetation index from the advanced very high resolution radiometer satellite are likely to confuse snowmelt and vegetation greening, leading to errors of up to 15 days in bud-burst date, with consequent large errors in carbon flux calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...