Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38834230

RESUMEN

BACKGROUND: Prenatal infections are associated with childhood developmental outcomes such as reduced cognitive abilities, emotional problems and other developmental vulnerabilities. However, there is currently a lack of research examining whether this arises due to potential intermediary variables like low birth weight or preterm birth, or due to some other mechanisms of maternal immune activation arising from prenatal infections. METHODS: Administrative data from the National Health Service health board of Greater Glasgow & Clyde, Scotland, were used, linking birth records to hospital records and universal child health review records for 55 534 children born from 2011 to 2015, and their mothers. Causal mediation analysis was conducted to examine the extent to which low birth weight and preterm birth mediate the relationship between hospital-diagnosed prenatal infections and having developmental concern(s) identified by a health visitor during 6-8 weeks or 27-30 months child health reviews. RESULTS: Model estimates suggest that 5.18% (95% CI 3.77% to 7.65%) of the positive association observed between hospital-diagnosed prenatal infections and developmental concern(s) was mediated by low birth weight, while 7.37% (95% CI 5.36 to 10.88%) was mediated by preterm birth. CONCLUSION: Low birth weight and preterm birth appear to mediate the relationship between prenatal infections and childhood development, but only to a small extent. Maternal immune activation mechanisms unrelated to low birth weight and preterm birth remain the most likely explanation for associations observed between prenatal infections and child developmental outcomes, although other factors (for example, genetic factors) may also be involved.

2.
Mol Autism ; 15(1): 22, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38790065

RESUMEN

BACKGROUND: Social affective and communication symptoms are central to autism spectrum disorder (ASD), yet their severity differs across toddlers: Some toddlers with ASD display improving abilities across early ages and develop good social and language skills, while others with "profound" autism have persistently low social, language and cognitive skills and require lifelong care. The biological origins of these opposite ASD social severity subtypes and developmental trajectories are not known. METHODS: Because ASD involves early brain overgrowth and excess neurons, we measured size and growth in 4910 embryonic-stage brain cortical organoids (BCOs) from a total of 10 toddlers with ASD and 6 controls (averaging 196 individual BCOs measured/subject). In a 2021 batch, we measured BCOs from 10 ASD and 5 controls. In a 2022 batch, we  tested replicability of BCO size and growth effects by generating and measuring an independent batch of BCOs from 6 ASD and 4 control subjects. BCO size was analyzed within the context of our large, one-of-a-kind social symptom, social attention, social brain and social and language psychometric normative datasets ranging from N = 266 to N = 1902 toddlers. BCO growth rates were examined by measuring size changes between 1- and 2-months of organoid development. Neurogenesis markers at 2-months were examined at the cellular level. At the molecular level, we measured activity and expression of Ndel1; Ndel1 is a prime target for cell cycle-activated kinases; known to regulate cell cycle, proliferation, neurogenesis, and growth; and known to be involved in neuropsychiatric conditions. RESULTS: At the BCO level, analyses showed BCO size was significantly enlarged by 39% and 41% in ASD in the 2021 and 2022 batches. The larger the embryonic BCO size, the more severe the ASD social symptoms. Correlations between BCO size and social symptoms were r = 0.719 in the 2021 batch and r = 0. 873 in the replication 2022 batch. ASD BCOs grew at an accelerated rate nearly 3 times faster than controls. At the cell level, the two largest ASD BCOs had accelerated neurogenesis. At the molecular level, Ndel1 activity was highly correlated with the growth rate and size of BCOs. Two BCO subtypes were found in ASD toddlers: Those in one subtype had very enlarged BCO size with accelerated rate of growth and neurogenesis; a profound autism clinical phenotype displaying severe social symptoms, reduced social attention, reduced cognitive, very low language and social IQ; and substantially altered growth in specific cortical social, language and sensory regions. Those in a second subtype had milder BCO enlargement and milder social, attention, cognitive, language and cortical differences. LIMITATIONS: Larger samples of ASD toddler-derived BCO and clinical phenotypes may reveal additional ASD embryonic subtypes. CONCLUSIONS: By embryogenesis, the biological bases of two subtypes of ASD social and brain development-profound autism and mild autism-are already present and measurable and involve dysregulated cell proliferation and accelerated neurogenesis and growth. The larger the embryonic BCO size in ASD, the more severe the toddler's social symptoms and the more reduced the social attention, language ability, and IQ, and the more atypical the growth of social and language brain regions.


Asunto(s)
Trastorno del Espectro Autista , Organoides , Humanos , Trastorno del Espectro Autista/patología , Trastorno del Espectro Autista/fisiopatología , Organoides/patología , Masculino , Femenino , Preescolar , Corteza Cerebral/patología , Conducta Social , Tamaño de los Órganos , Lactante , Índice de Severidad de la Enfermedad , Encéfalo/patología
3.
medRxiv ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38766085

RESUMEN

Phenotypic heterogeneity in early language, intellectual, motor, and adaptive functioning (LIMA) features are amongst the most striking features that distinguish different types of autistic individuals. Yet the current diagnostic criteria uses a single label of autism and implicitly emphasizes what individuals have in common as core social-communicative and restricted repetitive behavior difficulties. Subtype labels based on the non-core LIMA features may help to more meaningfully distinguish types of autisms with differing developmental paths and differential underlying biology. Using relatively large (n=615) publicly available data from early developing (24-68 months) standardized clinical tests tapping LIMA features, we show that stability-based relative cluster validation analysis can identify two robust and replicable clusters in the autism population with high levels of generalization accuracy (98%). These clusters can be described as Type I versus Type II autisms differentiated by relatively high versus low scores on LIMA features. These two types of autisms are also distinguished by different developmental trajectories over the first decade of life. Finally, these two types of autisms reveal striking differences in functional and structural neuroimaging phenotypes and their relationships with gene expression. This work emphasizes the potential importance of stratifying autism by a Type I versus Type II distinction focused on LIMA features and which may be of high prognostic and biological significance.

4.
medRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38106166

RESUMEN

Background: Autism and attention deficit hyperactivity disorder (ADHD) are heterogeneous neurodevelopmental conditions with complex underlying neurobiology. Despite overlapping presentation and sex-biased prevalence, autism and ADHD are rarely studied together, and sex differences are often overlooked. Normative modelling provides a unified framework for studying age-specific and sex-specific divergences in neurodivergent brain development. Methods: Here we use normative modelling and a large, multi-site neuroimaging dataset to characterise cortical anatomy associated with autism and ADHD, benchmarked against models of typical brain development based on a sample of over 75,000 individuals. We also examined sex and age differences, relationship with autistic traits, and explored the co-occurrence of autism and ADHD (autism+ADHD). Results: We observed robust neuroanatomical signatures of both autism and ADHD. Overall, autistic individuals showed greater cortical thickness and volume localised to the superior temporal cortex, whereas individuals with ADHD showed more global effects of cortical thickness increases but lower cortical volume and surface area across much of the cortex. The autism+ADHD group displayed a unique pattern of widespread increases in cortical thickness, and certain decreases in surface area. We also found evidence that sex modulates the neuroanatomy of autism but not ADHD, and an age-by-diagnosis interaction for ADHD only. Conclusions: These results indicate distinct cortical differences in autism and ADHD that are differentially impacted by age, sex, and potentially unique patterns related to their co-occurrence.

5.
Cell Rep ; 42(11): 113439, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37963017

RESUMEN

Human brain size changes dynamically through early development, peaks in adolescence, and varies up to 2-fold among adults. However, the molecular genetic underpinnings of interindividual variation in brain size remain unknown. Here, we leveraged postmortem brain RNA sequencing and measurements of brain weight (BW) in 2,531 individuals across three independent datasets to identify 928 genome-wide significant associations with BW. Genes associated with higher or lower BW showed distinct neurodevelopmental trajectories and spatial patterns that mapped onto functional and cellular axes of brain organization. Expression of BW genes was predictive of interspecies differences in brain size, and bioinformatic annotation revealed enrichment for neurogenesis and cell-cell communication. Genome-wide, transcriptome-wide, and phenome-wide association analyses linked BW gene sets to neuroimaging measurements of brain size and brain-related clinical traits. Cumulatively, these results represent a major step toward delineating the molecular pathways underlying human brain size variation in health and disease.


Asunto(s)
Encéfalo , Transcriptoma , Adulto , Humanos , Tamaño de los Órganos , Encéfalo/metabolismo , Fenotipo , Estudio de Asociación del Genoma Completo/métodos , Biología Molecular , Predisposición Genética a la Enfermedad
6.
bioRxiv ; 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37693556

RESUMEN

Autism presents with significant phenotypic and neuroanatomical heterogeneity, and neuroimaging studies of the thalamus, globus pallidus and striatum in autism have produced inconsistent and contradictory results. These structures are critical mediators of functions known to be atypical in autism, including sensory gating and motor function. We examined both volumetric and fine-grained localized shape differences in autism using a large (n=3145, 1045-1318 after strict quality control), cross-sectional dataset of T1-weighted structural MRI scans from 32 sites, including both males and females (assigned-at-birth). We investigated three potentially important sources of neuroanatomical heterogeneity: sex, age, and intelligence quotient (IQ), using a meta-analytic technique after strict quality control to minimize non-biological sources of variation. We observed no volumetric differences in the thalamus, globus pallidus, or striatum in autism. Rather, we identified a variety of localized shape differences in all three structures. Including age, but not sex or IQ, in the statistical model improved the fit for both the pallidum and striatum, but not for the thalamus. Age-centered shape analysis indicated a variety of age-dependent regional differences. Overall, our findings help confirm that the neurodevelopment of the striatum, globus pallidus and thalamus are atypical in autism, in a subtle location-dependent manner that is not reflected in overall structure volumes, and that is highly non-uniform across the lifespan.

7.
Mol Psychiatry ; 28(5): 2158-2169, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36991132

RESUMEN

Individuals with autism spectrum disorder (henceforth referred to as autism) display significant variation in clinical outcome. For instance, across age, some individuals' adaptive skills naturally improve or remain stable, while others' decrease. To pave the way for 'precision-medicine' approaches, it is crucial to identify the cross-sectional and, given the developmental nature of autism, longitudinal neurobiological (including neuroanatomical and linked genetic) correlates of this variation. We conducted a longitudinal follow-up study of 333 individuals (161 autistic and 172 neurotypical individuals, aged 6-30 years), with two assessment time points separated by ~12-24 months. We collected behavioural (Vineland Adaptive Behaviour Scale-II, VABS-II) and neuroanatomical (structural magnetic resonance imaging) data. Autistic participants were grouped into clinically meaningful "Increasers", "No-changers", and "Decreasers" in adaptive behaviour (based on VABS-II scores). We compared each clinical subgroup's neuroanatomy (surface area and cortical thickness at T1, ∆T (intra-individual change) and T2) to that of the neurotypicals. Next, we explored the neuroanatomical differences' potential genomic associates using the Allen Human Brain Atlas. Clinical subgroups had distinct neuroanatomical profiles in surface area and cortical thickness at baseline, neuroanatomical development, and follow-up. These profiles were enriched for genes previously associated with autism and for genes previously linked to neurobiological pathways implicated in autism (e.g. excitation-inhibition systems). Our findings suggest that distinct clinical outcomes (i.e. intra-individual change in clinical profiles) linked to autism core symptoms are associated with atypical cross-sectional and longitudinal, i.e. developmental, neurobiological profiles. If validated, our findings may advance the development of interventions, e.g. targeting mechanisms linked to relatively poorer outcomes.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Estudios de Seguimiento , Neuroanatomía , Estudios Transversales
8.
Mol Autism ; 14(1): 11, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899425

RESUMEN

BACKGROUND: Social and language abilities are closely intertwined during early typical development. In autism spectrum disorder (ASD), however, deficits in social and language development are early-age core symptoms. We previously reported that superior temporal cortex, a well-established social and language region, shows reduced activation to social affective speech in ASD toddlers; however, the atypical cortical connectivity that accompanies this deviance remains unknown. METHODS: We collected clinical, eye tracking, and resting-state fMRI data from 86 ASD and non-ASD subjects (mean age 2.3 ± 0.7 years). Functional connectivity of left and right superior temporal regions with other cortical regions and correlations between this connectivity and each child's social and language abilities were examined. RESULTS: While there was no group difference in functional connectivity, the connectivity between superior temporal cortex and frontal and parietal regions was significantly correlated with language, communication, and social abilities in non-ASD subjects, but these effects were absent in ASD subjects. Instead, ASD subjects, regardless of different social or nonsocial visual preferences, showed atypical correlations between temporal-visual region connectivity and communication ability (r(49) = 0.55, p < 0.001) and between temporal-precuneus connectivity and expressive language ability (r(49) = 0.58, p < 0.001). LIMITATIONS: The distinct connectivity-behavior correlation patterns may be related to different developmental stages in ASD and non-ASD subjects. The use of a prior 2-year-old template for spatial normalization may not be optimal for a few subjects beyond this age range. CONCLUSIONS: Superior temporal cortex is known to have reduced activation to social affective speech in ASD at early ages, and here we find in ASD toddlers that it also has atypical connectivity with visual and precuneus cortices that is correlated with communication and language ability, a pattern not seen in non-ASD toddlers. This atypicality may be an early-age signature of ASD that also explains why the disorder has deviant early language and social development. Given that these atypical connectivity patterns are also present in older individuals with ASD, we conclude these atypical connectivity patterns persist across age and may explain why successful interventions targeting language and social skills at all ages in ASD are so difficult to achieve.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Anciano , Lactante , Preescolar , Encéfalo , Mapeo Encefálico , Lóbulo Temporal , Imagen por Resonancia Magnética , Lóbulo Parietal , Vías Nerviosas
9.
Res Sq ; 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36778379

RESUMEN

Identifying prognostic early brain alterations is crucial for autism spectrum disorder (ASD). Leveraging structural MRI data from 166 ASD and 109 typical developing (TD) toddlers and controlling for brain size, we found that, compared to TD, ASD toddlers showed larger or thicker lateral temporal regions; smaller or thinner frontal lobe and midline structures; larger callosal subregion volume; and smaller cerebellum. Most of these differences were replicated in an independent cohort of 38 ASD and 37 TD toddlers. Moreover, the identified brain alterations were related to ASD symptom severity and cognitive impairments at intake, and, remarkably, they improved the accuracy for predicting later language outcome beyond intake clinical and demographic variables. In summary, brain regions involved in language, social, and face processing were altered in ASD toddlers. These early-age brain alterations may be the result of dysregulation in multiple neural processes and stages and are promising prognostic biomarkers for future language ability.

10.
Br J Psychiatry ; 222(3): 100-111, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36700346

RESUMEN

BACKGROUND: Reward processing has been proposed to underpin the atypical social feature of autism spectrum disorder (ASD). However, previous neuroimaging studies have yielded inconsistent results regarding the specificity of atypicalities for social reward processing in ASD. AIMS: Utilising a large sample, we aimed to assess reward processing in response to reward type (social, monetary) and reward phase (anticipation, delivery) in ASD. METHOD: Functional magnetic resonance imaging during social and monetary reward anticipation and delivery was performed in 212 individuals with ASD (7.6-30.6 years of age) and 181 typically developing participants (7.6-30.8 years of age). RESULTS: Across social and monetary reward anticipation, whole-brain analyses showed hypoactivation of the right ventral striatum in participants with ASD compared with typically developing participants. Further, region of interest analysis across both reward types yielded ASD-related hypoactivation in both the left and right ventral striatum. Across delivery of social and monetary reward, hyperactivation of the ventral striatum in individuals with ASD did not survive correction for multiple comparisons. Dimensional analyses of autism and attention-deficit hyperactivity disorder (ADHD) scores were not significant. In categorical analyses, post hoc comparisons showed that ASD effects were most pronounced in participants with ASD without co-occurring ADHD. CONCLUSIONS: Our results do not support current theories linking atypical social interaction in ASD to specific alterations in social reward processing. Instead, they point towards a generalised hypoactivity of ventral striatum in ASD during anticipation of both social and monetary rewards. We suggest this indicates attenuated reward seeking in ASD independent of social content and that elevated ADHD symptoms may attenuate altered reward seeking in ASD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Recompensa , Imagen por Resonancia Magnética/métodos
11.
Am J Psychiatry ; 180(1): 50-64, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36415971

RESUMEN

OBJECTIVE: The male preponderance in prevalence of autism is among the most pronounced sex ratios across neurodevelopmental conditions. The authors sought to elucidate the relationship between autism and typical sex-differential neuroanatomy, cognition, and related gene expression. METHODS: Using a novel deep learning framework trained to predict biological sex based on T1-weighted structural brain images, the authors compared sex prediction model performance across neurotypical and autistic males and females. Multiple large-scale data sets comprising T1-weighted MRI data were employed at four stages of the analysis pipeline: 1) pretraining, with the UK Biobank sample (>10,000 individuals); 2) transfer learning and validation, with the ABIDE data sets (1,412 individuals, 5-56 years of age); 3) test and discovery, with the EU-AIMS/AIMS-2-TRIALS LEAP data set (681 individuals, 6-30 years of age); and 4) specificity, with the NeuroIMAGE and ADHD200 data sets (887 individuals, 7-26 years of age). RESULTS: Across both ABIDE and LEAP, features positively predictive of neurotypical males were on average significantly more predictive of autistic males (ABIDE: Cohen's d=0.48; LEAP: Cohen's d=1.34). Features positively predictive of neurotypical females were on average significantly less predictive of autistic females (ABIDE: Cohen's d=1.25; LEAP: Cohen's d=1.29). These differences in sex prediction accuracy in autism were not observed in individuals with ADHD. In autistic females, the male-shifted neurophenotype was further associated with poorer social sensitivity and emotional face processing while also associated with gene expression patterns of midgestational cell types. CONCLUSIONS: The results demonstrate an increased resemblance in both autistic male and female individuals' neuroanatomy with male-characteristic patterns associated with typically sex-differential social cognitive features and related gene expression patterns. The findings hold promise for future research aimed at refining the quest for biological mechanisms underpinning the etiology of autism.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Masculino , Femenino , Trastorno Autístico/genética , Neuroanatomía , Encéfalo/diagnóstico por imagen , Cognición , Expresión Génica/genética , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/psicología
12.
Imaging Neurosci (Camb) ; 1: 1-21, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38495338

RESUMEN

Structural magnetic resonance imaging (MRI) quality is known to impact and bias neuroanatomical estimates and downstream analysis, including case-control comparisons, and a growing body of work has demonstrated the importance of careful quality control (QC) and evaluated the impact of image and image-processing quality. However, the growing size of typical neuroimaging datasets presents an additional challenge to QC, which is typically extremely time and labour intensive. One of the most important aspects of MRI quality is the accuracy of processed outputs, which have been shown to impact estimated neurodevelopmental trajectories. Here, we evaluate whether the quality of surface reconstructions by FreeSurfer (one of the most widely used MRI processing pipelines) interacts with clinical and demographic factors. We present a tool, FSQC, that enables quick and efficient yet thorough assessment of outputs of the FreeSurfer processing pipeline. We validate our method against other existing QC metrics, including the automated FreeSurfer Euler number, two other manual ratings of raw image quality, and two popular automated QC methods. We show strikingly similar spatial patterns in the relationship between each QC measure and cortical thickness; relationships for cortical volume and surface area are largely consistent across metrics, though with some notable differences. We next demonstrate that thresholding by QC score attenuates but does not eliminate the impact of quality on cortical estimates. Finally, we explore different ways of controlling for quality when examining differences between autistic individuals and neurotypical controls in the Autism Brain Imaging Data Exchange (ABIDE) dataset, demonstrating that inadequate control for quality can alter results of case-control comparisons.

13.
BMC Pregnancy Childbirth ; 22(1): 848, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36397016

RESUMEN

BACKGROUND: Maternal prenatal infections have been linked to children's neurodevelopment and cognitive outcomes. It remains unclear, however, whether infections occurring during specific vulnerable gestational periods can affect children's cognitive outcomes. The study aimed to examine maternal infections in each trimester of pregnancy and associations with children's developmental and intelligence quotients. The ALSPAC birth cohort was used to investigate associations between maternal infections in pregnancy and child cognitive outcomes. METHODS: Infection data from mothers and cognition data from children were included with the final study sample size comprising 7,410 mother-child participants. Regression analysis was used to examine links between maternal infections occurring at each trimester of pregnancy and children's cognition at 18 months, 4 years, and 8 years. RESULTS: Infections in the third trimester were significantly associated with decreased verbal IQ at age 4 (p < .05, adjusted R2 = 0.004); decreased verbal IQ (p < .01, adjusted R2 = 0.001), performance IQ (p < .01, adjusted R2 = 0.0008), and total IQ at age 8 (p < .01, adjusted R2 = 0.001). CONCLUSION: Results suggest that maternal infections in the third trimester could have a latent effect on cognitive development, only emerging when cognitive load increases over time, though magnitude of effect appears to be small. Performance IQ may be more vulnerable to trimester-specific exposure to maternal infection as compared to verbal IQ. Future research could include examining potential mediating mechanisms on childhood cognition, such as possible moderating effects of early childhood environmental factors, and if effects persist in future cognitive outcomes.


Asunto(s)
Cognición , Madres , Embarazo , Femenino , Humanos , Preescolar , Niño , Pruebas de Inteligencia , Tercer Trimestre del Embarazo
14.
Front Endocrinol (Lausanne) ; 13: 903058, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937791

RESUMEN

Gender dysphoria (GD) is characterized by distress due to an incongruence between experienced gender and sex assigned at birth. Brain functional connectivity in adolescents who experience GD may be associated with experienced gender (vs. assigned sex) and/or brain networks implicated in own-body perception. Furthermore, sexual orientation may be related to brain functional organization given commonalities in developmental mechanisms proposed to underpin GD and same-sex attractions. Here, we applied group independent component analysis to resting-state functional magnetic resonance imaging (rs-fMRI) BOLD timeseries data to estimate inter-network (i.e., between independent components) timeseries correlations, representing functional connectivity, in 17 GD adolescents assigned female at birth (AFAB) not receiving gender-affirming hormone therapy, 17 cisgender girls, and 15 cisgender boys (ages 12-17 years). Sexual orientation was represented by degree of androphilia-gynephilia and sexual attractions strength. Multivariate partial least squares analyses found that functional connectivity differed among cisgender boys, cisgender girls, and GD AFAB, with the largest difference between cisgender boys and GD AFAB. Regarding sexual orientation and age, the brain's intrinsic functional organization of GD AFAB was both similar to and different from cisgender girls, and both differed from cisgender boys. The pattern of group differences and the networks involved aligned with the hypothesis that brain functional organization is different among GD AFAB (vs. cisgender) adolescents, and certain aspects of this organization relate to brain areas implicated in own-body perception and self-referential thinking. Overall, brain functional organization of GD AFAB was generally more similar to that of cisgender girls than cisgender boys.


Asunto(s)
Disforia de Género , Adolescente , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , Femenino , Disforia de Género/patología , Humanos , Recién Nacido , Imagen por Resonancia Magnética/métodos , Masculino , Conducta Sexual
15.
Front Psychiatry ; 13: 903489, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35722549

RESUMEN

Autism is a clinical consensus diagnosis made based on behavioral symptoms of early developmental difficulties in domains of social-communication (SC) and restricted repetitive behaviors (RRB). Many readily assume that alongside being optimal for separating individuals based on SC and RRB behavioral domains, that the label should also be highly useful for explaining differential biology, outcomes, and treatment (BOT) responses. However, we also now take for granted the fact that the autism population is vastly heterogeneous at multiple scales, from genome to phenome. In the face of such multi-scale heterogeneity, here we argue that the concept of autism along with the assumptions that surround it require some rethinking. While we should retain the diagnosis for all the good it can do in real-world circumstances, we also call for the allowance of multiple other possible definitions that are better tailored to be highly useful for other translational end goals, such as explaining differential BOT responses.

16.
Commun Biol ; 5(1): 459, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562546

RESUMEN

Two plasmid-encoded dihydrofolate reductase (DHFR) isoforms, DfrA1 and DfrA5, that give rise to high levels of resistance in Gram-negative bacteria were structurally and biochemically characterized to reveal the mechanism of TMP resistance and to support phylogenic groupings for drug development against antibiotic resistant pathogens. Preliminary screening of novel antifolates revealed related chemotypes that showed high levels of inhibitory potency against Escherichia coli chromosomal DHFR (EcDHFR), DfrA1, and DfrA5. Kinetics and biophysical analysis, coupled with crystal structures of trimethoprim bound to EcDHFR, DfrA1 and DfrA5, and two propargyl-linked antifolates (PLA) complexed with EcDHFR, DfrA1 and DfrA5, were determined to define structural features of the substrate binding pocket and guide synthesis of pan-DHFR inhibitors.


Asunto(s)
Antagonistas del Ácido Fólico , Resistencia al Trimetoprim , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Fólico/análogos & derivados , Antagonistas del Ácido Fólico/química , Antagonistas del Ácido Fólico/metabolismo , Antagonistas del Ácido Fólico/farmacología , Plásmidos/genética , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Resistencia al Trimetoprim/genética
17.
Am J Psychiatry ; 179(5): 336-349, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35331004

RESUMEN

OBJECTIVE: Autism spectrum disorder (ASD) is a lifelong neurodevelopmental condition that is associated with significant difficulties in adaptive behavior and variation in clinical outcomes across the life span. Some individuals with ASD improve, whereas others may not change significantly, or regress. Hence, the development of "personalized medicine" approaches is essential. However, this requires an understanding of the biological processes underpinning differences in clinical outcome, at both the individual and subgroup levels, across the lifespan. METHODS: The authors conducted a longitudinal follow-up study of 483 individuals (204 with ASD and 279 neurotypical individuals, ages 6-30 years), with assessment time points separated by ∼12-24 months. Data collected included behavioral data (Vineland Adaptive Behavior Scale-II), neuroanatomical data (structural MRI), and genetic data (DNA). Individuals with ASD were grouped into clinically meaningful "increasers," "no-changers," and "decreasers" in adaptive behavior. First, the authors compared neuroanatomy between outcome groups. Next, they examined whether deviations from the neurotypical neuroanatomical profile were associated with outcome at the individual level. Finally, they explored the observed neuroanatomical differences' potential genetic underpinnings. RESULTS: Outcome groups differed in neuroanatomical features (cortical volume and thickness, surface area), including in "social brain" regions previously implicated in ASD. Also, deviations of neuroanatomical features from the neurotypical profile predicted outcome at the individual level. Moreover, neuroanatomical differences were associated with genetic processes relevant to neuroanatomical phenotypes (e.g., synaptic development). CONCLUSIONS: This study demonstrates, for the first time, that variation in clinical (adaptive) outcome is associated with both group- and individual-level variation in anatomy of brain regions enriched for genes relevant to ASD. This may facilitate the move toward better targeted/precision medicine approaches.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Adaptación Psicológica , Trastorno del Espectro Autista/genética , Estudios de Seguimiento , Humanos , Imagen por Resonancia Magnética
18.
Soc Cogn Affect Neurosci ; 17(10): 929-938, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-35254443

RESUMEN

Oxytocin is hypothesized to promote social interactions by enhancing the salience of social stimuli. While previous neuroimaging studies have reported that oxytocin enhances amygdala activation to face stimuli in autistic men, effects in autistic women remain unclear. In this study, the influence of intranasal oxytocin on activation and functional connectivity of the basolateral amygdala-the brain's 'salience detector'-while processing emotional faces vs shapes was tested in 16 autistic and 21 non-autistic women by functional magnetic resonance imaging in a placebo-controlled, within-subject, cross-over design. In the placebo condition, minimal activation differences were observed between autistic and non-autistic women. However, significant drug × group interactions were observed for both basolateral amygdala activation and functional connectivity. Oxytocin increased left basolateral amygdala activation among autistic women (35-voxel cluster, Montreal Neurological Institute (MNI) coordinates of peak voxel = -22 -10 -28; mean change = +0.079%, t = 3.159, PTukey = 0.0166) but not among non-autistic women (mean change = +0.003%, t = 0.153, PTukey = 0.999). Furthermore, oxytocin increased functional connectivity of the right basolateral amygdala with brain regions associated with socio-emotional information processing in autistic women, but not in non-autistic women, attenuating group differences in the placebo condition. Taken together, these findings extend evidence of oxytocin's effects on the amygdala to specifically include autistic women and specify the subregion of the effect.


Asunto(s)
Complejo Nuclear Basolateral , Oxitocina , Administración Intranasal , Amígdala del Cerebelo/fisiología , Estudios Cruzados , Emociones/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Oxitocina/farmacología
19.
Nat Hum Behav ; 6(3): 443-454, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34980898

RESUMEN

Affective speech, including motherese, captures an infant's attention and enhances social, language and emotional development. Decreased behavioural response to affective speech and reduced caregiver-child interactions are early signs of autism in infants. To understand this, we measured neural responses to mild affect speech, moderate affect speech and motherese using natural sleep functional magnetic resonance imaging and behavioural preference for motherese using eye tracking in typically developing toddlers and those with autism. By combining diverse neural-clinical data using similarity network fusion, we discovered four distinct clusters of toddlers. The autism cluster with the weakest superior temporal responses to affective speech and very poor social and language abilities had reduced behavioural preference for motherese, while the typically developing cluster with the strongest superior temporal response to affective speech showed the opposite effect. We conclude that significantly reduced behavioural preference for motherese in autism is related to impaired development of temporal cortical systems that normally respond to parental affective speech.


Asunto(s)
Trastorno del Espectro Autista , Habla , Atención , Trastorno del Espectro Autista/diagnóstico por imagen , Tecnología de Seguimiento Ocular , Humanos , Lactante , Desarrollo del Lenguaje
20.
Am J Psychiatry ; 179(3): 242-254, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34503340

RESUMEN

OBJECTIVE: Autism spectrum disorder (ASD) is accompanied by highly individualized neuroanatomical deviations that potentially map onto distinct genotypes and clinical phenotypes. This study aimed to link differences in brain anatomy to specific biological pathways to pave the way toward targeted therapeutic interventions. METHODS: The authors examined neurodevelopmental differences in cortical thickness and their genomic underpinnings in a large and clinically diverse sample of 360 individuals with ASD and 279 typically developing control subjects (ages 6-30 years) within the EU-AIMS Longitudinal European Autism Project (LEAP). The authors also examined neurodevelopmental differences and their potential pathophysiological mechanisms between clinical ASD subgroups that differed in the severity and pattern of sensory features. RESULTS: In addition to significant between-group differences in "core" ASD brain regions (i.e., fronto-temporal and cingulate regions), individuals with ASD manifested as neuroanatomical outliers within the neurotypical cortical thickness range in a wider neural system, which was enriched for genes known to be implicated in ASD on the genetic and/or transcriptomic level. Within these regions, the individuals' total (i.e., accumulated) degree of neuroanatomical atypicality was significantly correlated with higher polygenic scores for ASD and other psychiatric conditions, and it scaled with measures of symptom severity. Differences in cortical thickness deviations were also associated with distinct sensory subgroups, especially in brain regions expressing genes involved in excitatory rather than inhibitory neurotransmission. CONCLUSIONS: The study findings corroborate the link between macroscopic differences in brain anatomy and the molecular mechanisms underpinning heterogeneity in ASD, and provide future targets for stratification and subtyping.


Asunto(s)
Trastorno del Espectro Autista , Trastorno del Espectro Autista/diagnóstico , Encéfalo , Genómica , Giro del Cíngulo , Humanos , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...