Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(11)2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37298678

RESUMEN

Combating antimicrobial resistance (AMR) is among the 10 global health issues identified by the World Health Organization (WHO) in 2021. While AMR is a naturally occurring process, the inappropriate use of antibiotics in different settings and legislative gaps has led to its rapid progression. As a result, AMR has grown into a serious global menace that impacts not only humans but also animals and, ultimately, the entire environment. Thus, effective prophylactic measures, as well as more potent and non-toxic antimicrobial agents, are pressingly needed. The antimicrobial activity of essential oils (EOs) is supported by consistent research in the field. Although EOs have been used for centuries, they are newcomers when it comes to managing infections in clinical settings; it is mainly because methodological settings are largely non-overlapping and there are insufficient data regarding EOs' in vivo activity and toxicity. This review considers the concept of AMR and its main determinants, the modality by which the issue has been globally addressed and the potential of EOs as alternative or auxiliary therapy. The focus is shifted towards the pathogenesis, mechanism of resistance and activity of several EOs against the six high priority pathogens listed by WHO in 2017, for which new therapeutic solutions are pressingly required.


Asunto(s)
Antiinfecciosos , Aceites Volátiles , Animales , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Organización Mundial de la Salud
2.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37375800

RESUMEN

Pharmacological responses vary by sex in several illnesses. This narrative review summarizes sex variations in pharmaceutical response in SARS-CoV-2 infection, dyslipidemia, and diabetes mellitus. Infection with SARS-CoV-2 is more severe and deadly in men than women. This may be attributed to immunological responses, genetics, and hormones. Some research shows that men may respond better to genomic vaccinations and females to antiviral medications such as remdesivir (Moderna and Pfizer-BioNTech). In dyslipidemia, women tend to have greater HDL-C and lower LDL-C than men. Some studies show that females may need lower statin dosages than men to obtain equal LDL-C reductions. Ezetimibe co-administered with a statin significantly improved lipid profile indicators in men compared to women. Statins reduce dementia risk. Atorvastatin decreased dementia risk in males (adjusted HR 0.92, 95% CI 0.88-0.97), whereas lovastatin lowered dementia risk in women (HR 0.74, 95% CI 0.58-0.95). In diabetes mellitus, evidence suggests that females may have a higher risk of developing certain complications such as diabetic retinopathy and neuropathy, despite having lower rates of cardiovascular disease than males. This could be the result of differences in hormonal influences and genetic factors. Some research shows females may respond better to oral hypoglycemic medications such as metformin. In conclusion, sex-related differences in pharmacological response have been observed in SARS-CoV-2 infection, dyslipidemia, and diabetes mellitus. Further research is needed to better understand these differences and to develop personalized treatment strategies for males and females with these conditions.

3.
Plants (Basel) ; 12(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36986941

RESUMEN

Malignant melanoma is one of the most pressing problems in the developing world. New therapeutic agents that might be effective in treating malignancies that have developed resistance to conventional medications are urgently required. Semisynthesis is an essential method for improving the biological activity and the therapeutic efficacy of natural product precursors. Semisynthetic derivatives of natural compounds are valuable sources of new drug candidates with a variety of pharmacological actions, including anticancer ones. Two novel semisynthetic derivatives of betulinic acid-N-(2,3-indolo-betulinoyl)diglycylglycine (BA1) and N-(2,3-indolo-betulinoyl)glycylglycine (BA2)-were designed and their antiproliferative, cytotoxic, and anti-migratory activity against A375 human melanoma cells was determined in comparison with known N-(2,3-indolo-betulinoyl)glycine (BA3), 2,3-indolo-betulinic acid (BA4) and naturally occurring betulinic acid (BI). A dose-dependent antiproliferative effect with IC50 values that ranged from 5.7 to 19.6 µM was observed in the series of all five compounds including betulinic acid. The novel compounds BA1 (IC50 = 5.7 µM) and BA2 (IC50 = 10.0 µM) were three times and two times more active than the parent cyclic structure B4 and natural BI. Additionally, compounds BA2, BA3, and BA4 possess antibacterial activity against Streptococcus pyogenes ATCC 19615 and Staphylococcus aureus ATCC 25923 with MIC values in the range of 13-16 µg/mL and 26-32 µg/mL, respectively. On the other hand, antifungal activity toward Candida albicans ATCC 10231 and Candida parapsilosis ATCC 22019 was found for compound BA3 with MIC 29 µg/mL. This is the first report of antibacterial and antifungal activity of 2,3-indolo-betulinic acid derivatives and also the first extended report on their anti-melanoma activity, which among others includes data on anti-migratory activity and shows the significance of amino acid side chain on the observed activity. The obtained data justify further research on the anti-melanoma and antimicrobial activity of 2,3-indolo-betulinic acid derivatives.

4.
Plants (Basel) ; 13(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38202344

RESUMEN

The prevalence and severity of skin cancer, specifically malignant melanoma, among Caucasians remains a significant concern. Natural compounds from plants have long been explored as potential anticancer agents. Betulinic acid (BI) has shown promise in its therapeutic properties, including its anticancer effects. However, its limited bioavailability has hindered its medicinal applications. To address this issue, two recently synthesized semisynthetic derivatives, N-(2,3-indolo-betulinoyl)diglycylglycine (BA1) and N-(2,3-indolo-betulinoyl)glycylglycine (BA2), were compared with previously reported compounds N-(2,3-indolo-betulinoyl)glycine (BA3), 2,3-indolo-betulinic acid (BA4), and BI. These compounds were evaluated for their effects on murine melanoma cells (B164A5) using various in vitro assays. The introduction of an indole framework at the C2 position of BI resulted in an increased cytotoxicity. Furthermore, the cytotoxicity of compound BA4 was enhanced by conjugating its carboxylic group with an amino acid residue. BA2 and BA3, with glycine and glycylglycine residues at C28, exhibited approximately 2.20-fold higher inhibitory activity compared to BA4. The safety assessment of the compounds on human keratinocytes (HaCaT) has revealed that concentrations up to 10 µM slightly reduced cell viability, while concentrations of 75 µM resulted in lower cell viability rates. LDH leakage assays confirmed cell membrane damage in B164A5 cells when exposed to the tested compounds. BA2 and BA3 exhibited the highest LDH release, indicating their strong cytotoxicity. The NR assay revealed dose-dependent lysosome disruption for BI and 2,3-indolo-betulinic acid derivatives, with BA1, BA2, and BA3 showing the most cytotoxic effects. Scratch assays demonstrated concentration-dependent inhibition of cell migration, with BA2 and BA3 being the most effective. Hoechst 3342 staining revealed that BA2 induced apoptosis, while BA3 induced necrosis at lower concentrations, confirming their anti-melanoma properties. In conclusion, the semisynthetic derivatives of BI, particularly BA2 and BA3, show promise as potential candidates for further research in developing effective anti-cancer therapies.

5.
Plants (Basel) ; 11(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36365432

RESUMEN

The present study was aimed to evaluate the oxidative stability as well as to assess the protective effect of the mixture of Helianthus annuus L. (HAO) and Oenothera biennis L. (OBO) oils on 3D tissue models of skin irritation and phototoxicity. The following methods were used: GS analysis (fatty acids composition), thiobarbituric acid-reactive substances assay (TBA) (lipid oxidation degree of tested samples), 3D EpiDerm models (skin irritation and phototoxicity). For HAO the detected saturated fatty acids (SFA) were palmitic acid (7.179%), stearic acid (3.586%), eicosanoic (0.138%) and docosanoic acid (0.548%) The monounsaturated acids (MUFA) were palmitoleic acid (0.158%) and oleic acid (28.249%) and the polyunsaturated acids (PUFA) were linoleic acid (59.941%) and linolenic acid (0.208%). For OBO the detected SFA were myristic acid (0.325%), pentadecylic acid (0.281%), palmitic (7.2%), stearic (2.88%), and arachidic acid (0.275%). Regarding MUFA, even a lower proportion (8.196%) was observed, predominantly being oleic acid, cis form (7.175%), oleic (n10) (0.558%) and 11-eicosenoic (0.210%) acids. The higher content was found for PUFA (82.247%), the most significant proportions being linoleic acid (72.093%), arachidonic acid (9.812%) and linolenic (0.233%). Obtained data indicate a good oxidative stability and biocompatibility of the mixture on the 3D EpiDerm models with no irritant and no phototoxic effects. Oenothera biennis L. oil may be an excellent natural choice in order to delay or prevent oxidative damage of Helianthus annuus L. oil.

6.
Materials (Basel) ; 15(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35888477

RESUMEN

Green route is an economic, facile and eco-friendly method, employed for the synthesis of various types of nanoparticles, having it as a starting point biological entity, especially as a plant extract. The present study aims to obtain silver nanoparticles (AgNPs) starting from an ethanolic extract of Populi gemmae (Pg), by adjusting the reaction parameters. The morphological and structural characterization exhibited that both the reaction temperature and the concentration of metal salt, contributes to the obtaining of Pg-AgNPs with adjustable size and shape. The newly synthesized nanoparticles exhibited a good antibacterial activity on Gram-positive bacteria as well as antifungal activity. The in vitro antiproliferative activity of Pg-AgNPs was assessed on two different cancer cell lines (breast cancer cells-MCF7 and lung carcinoma epithelial cells-A549). Results have shown that the green-synthetized Pg-AgNPs_S2 (obtained at 60 °C, using AgNO3 of 5 M) induced a substantial decrease in tumor cell viability in a dose-dependent manner with an IC50 ranging from 5.03 to 5.07 µg/mL on A549 cell line and 3.24 to 4.93 µg/mL on MCF7 cell line.

7.
Plants (Basel) ; 11(14)2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35890423

RESUMEN

The rise of multidrug-resistant (MDR) pathogens has become a global health threat and an economic burden in providing adequate and effective treatment for many infections. This large-scale concern has emerged mainly due to mishandling of antibiotics (ABs) and has resulted in the rapid expansion of antimicrobial resistance (AMR). Nowadays, there is an urgent need for more potent, non-toxic and effective antimicrobial agents against MDR strains. In this regard, clinicians, pharmacists, microbiologists and the entire scientific community are encouraged to find alternative solutions in treating infectious diseases cause by these strains. In its "10 global issues to track in 2021", the World Health Organization (WHO) has made fighting drug resistance a priority. It has also issued a list of bacteria that are in urgent need for new ABs. Despite all available resources, researchers are unable to keep the pace of finding novel ABs in the face of emerging MDR strains. Traditional methods are increasingly becoming ineffective, so new approaches need to be considered. In this regard, the general tendency of turning towards natural alternatives has reinforced the interest in essential oils (EOs) as potent antimicrobial agents. Our present article aims to first review the main pathogens classified by WHO as critical in terms of current AMR. The next objective is to summarize the most important and up-to-date aspects of resistance mechanisms to classical antibiotic therapy and to compare them with the latest findings regarding the efficacy of alternative essential oil therapy.

8.
J Pers Med ; 12(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35743692

RESUMEN

In the last decades, both animal and human studies have neglected female subjects with the aim of evading a theorized intricacy of feminine hormonal status. However, clinical experience proves that pharmacological response may vary between the two sexes since pathophysiological dissimilarities between men and women significantly influence the pharmacokinetics and pharmacodynamics of drugs. Sex-related differences in central nervous system (CNS) medication are particularly challenging to assess due to the complexity of disease manifestation, drugs' intricate mechanisms of action, and lack of trustworthy means of evaluating the clinical response to medication. Although many studies showed contrary results, it appears to be a general tendency towards a certain sex-related difference in each pharmacological class. Broadly, opioids seem to produce better analgesia in women especially when they are administered for a prolonged period of time. On the other hand, respiratory and gastrointestinal adverse drug reactions (ADRs) following morphine therapy are more prevalent among female patients. Regarding antidepressants, studies suggest that males might respond better to tricyclic antidepressants (TCAs), whereas females prefer selective serotonin reuptake inhibitors (SSRI), probably due to their tolerance to particular ADRs. In general, studies missed spotting any significant sex-related differences in the therapeutic effect of antiepileptic drugs (AED), but ADRs have sex variations in conjunction with sex hormones' metabolism. On the subject of antipsychotic therapy, women appear to have a superior response to this pharmacological class, although there are also studies claiming the opposite. However, it seems that reported sex-related differences regarding ADRs are steadier: women are more at risk of developing various side effects, such as metabolic dysfunctions, cardiovascular disorders, and hyperprolactinemia. Taking all of the above into account, it seems that response to CNS drugs might be occasionally influenced by sex as a biological variable. Nonetheless, although for each pharmacological class, studies generally converge to a certain pattern, opposite outcomes are standing in the way of a clear consensus. Hence, the fact that so many studies are yielding conflicting results emphasizes once again the need to address sex-related differences in pharmacological response to drugs.

9.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916089

RESUMEN

Clinical trials have evidenced that several natural compounds, belonging to the phytochemical classes of alkaloids, terpenes, phenols and flavonoids, are effective for the management of various types of cancer. Latest research has proven that natural products and their semisynthetic variants may serve as a starting point for new drug candidates with a diversity of biological and pharmacological activities, designed to improve bioavailability, overcome cellular resistance, and enhance therapeutic efficacy. This review was designed to bring an update regarding the anticancer potential of betulonic acid and its semisynthetic derivatives. Chemical derivative structures of betulonic acid including amide, thiol, and piperidine groups, exert an amplification of the in vitro anticancer potential of betulonic acid. With the need for more mechanistic and in vivo data, some derivatives of betulonic acids may represent promising anticancer agents.


Asunto(s)
Antineoplásicos/química , Ácido Oleanólico/análogos & derivados , Animales , Antineoplásicos/uso terapéutico , Humanos , Ácido Oleanólico/química , Ácido Oleanólico/uso terapéutico
10.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348921

RESUMEN

Origanum vulgare L. is a widely used aromatic plant, especially due to its content in essential oil, mainly rich in carvacrol and thymol. The ethnopharmacological uses of Origanum vulgare L. essential oil (OEO) comprise digestive, respiratory, or dermatological disorders. The review focuses on the increasing number of recent studies investigating several biological activities of OEO. The bioactivities are in tight relation to the phytochemical profile of the essential oil, and also depend on taxonomic, climatic, and geographical characteristics of the plant material. The antibacterial, antifungal, antiparasitic, antioxidant, anti-inflammatory, antitumor, skin disorders beneficial effects, next to antihyperglycemic and anti-Alzheimer activities were reported and confirmed in multiple studies. Moreover, recent studies indicate a positive impact on skin disorders of OEO formulated as nanocarrier systems in order to improve its bioavailability and, thus, enhancing its therapeutic benefits. The review brings an up to date regarding the phytochemistry and bioactivity of Origanum vulgare L. essential oil, underlining also the most successful pharmaceutical formulation used for skin disorders.


Asunto(s)
Aceites Volátiles/farmacología , Origanum/química , Fitoquímicos/farmacología , Enfermedades de la Piel/tratamiento farmacológico , Animales , Humanos
11.
Plants (Basel) ; 9(11)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138272

RESUMEN

Populus nigra L. (Salicaceae family) is one of the most popular trees that can be found in deciduous forests. Some particularities that characterize the Populus genus refer to the fact that it includes more than 40 species, being widespread especially in Europe and Asia. Many residues, parts of this tree can be used as a bioresource for different extracts as active ingredients in pharmaceuticals next to multiple benefits in many areas of medicine. The present review discusses the latest findings regarding the phytochemical composition and the therapeutic properties of Populus nigra L. buds. The vegetal product has been described mainly to contain phenolic compounds (phenols, phenolic acids and phenylpropanoids), terpenoids (mono and sesquiterpenoids), flavones (e.g., apigenol and crysin), flavanones (e.g., pinocembrin and pinostrombin), caffeic/ferulic acids and their derivates, and more than 48 phytocompounds in the essential oils. The resinous exudates present on the buds have been the major plant source used by bees to form propolis. Several studies depicted its antioxidant, anti-inflammatory, antibacterial, antifungal, antidiabetic, antitumor, hepatoprotective, hypouricemic properties and its effects on melanin production. All these lead to the conclusion that black poplar buds are a valuable and important source of bioactive compounds responsible for a wide range of therapeutic uses, being a promising candidate as a complementary and/or alternative source for a large number of health problems. The aim of the review is to gather the existing information and to bring an up to date regarding the phytochemical and therapeutic uses of Populus nigra L. buds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...