Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 145: 114-122, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28855087

RESUMEN

G-protein coupled receptor (GPCR) biased agonism or functional selectivity has become an essential concept in GPCR research over the last years. Receptor-specific biased agonists selectively trigger one signaling pathway over another and induce a restricted/directed functional response. In this study, we aimed to characterize the concept of biased agonism for FPR2, a member of the formyl peptide receptor (FPR) subfamily of GPCRs. We show that the earlier described FPR2-activating pepducin F2Pal10 is a biased FPR2 agonist. The effects of F2Pal10 on neutrophil function differed in several aspects compared to those mediated by WKYMVM, a conventional FPR2-specific peptide agonist. Upon interaction with FPR2 expressed by neutrophils both F2Pal10 and WKYMVM activated the PLC-PIP2-Ca2+ signaling pathway and the superoxide-generating NADPH-oxidase, but only WKYMVM activated the receptor to recruit ß-arrestin. The functional consequences linked to a lack of ß-arrestin recruitment were further explored, and we demonstrate that FPR2 desensitization occurred independent of ß-arrestin. Despite this, reactivation of desensitized receptors achieved through a disruption of the cytoskeleton and through a novel FPR2 cross-talk mechanism with P2Y2R (the ATP receptor) and PAFR (the receptor for PAF) differed between F2Pal10-desensitized and WKYMVM-desensitized neutrophils. Further, the inability to recruit ß-arrestin was found to be associated with a reduced rate of receptor internalization and impaired chemotaxis in neutrophils. In summary, we provide experimental evidence of biased agonism for FPR2 and our data disclose critical roles of ß-arrestin in neutrophil chemotaxis and reactivation of desensitized receptors.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Neutrófilos/metabolismo , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo , Transducción de Señal/efectos de los fármacos , beta-Arrestinas/metabolismo , Animales , Apoptosis , Células CHO , Células Cultivadas , Cricetulus , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Lipopéptidos/farmacología , Neutrófilos/efectos de los fármacos , Oligopéptidos/farmacología , Receptores de Formil Péptido/genética , Receptores de Lipoxina/genética , Transducción de Señal/fisiología , beta-Arrestinas/genética
2.
J Leukoc Biol ; 102(3): 741-751, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28584077

RESUMEN

Angiogenesis, the growth of new blood vessels, is a complex process requiring the orchestration of numerous different cell types, growth factors, and chemokines. Some of the recently acknowledged actors in this process are immune cells. They accumulate at hypoxic sites, but the kinetics, dynamics, and regulation of that trafficking are unknown. In this study, we used intravital and live cell imaging to understand how neutrophils and macrophages migrate and behave at angiogenic sites. We developed two reproducible models of angiogenesis: one by transplanting isolated and hypoxic pancreatic islets into the cremaster muscles of mice, and another by in vitro coculturing of mouse aortic rings with neutrophils. In vivo imaging of the hypoxic site revealed recruitment of neutrophils and macrophages, which occurred in parallel, with depletion of one subset not affecting the accumulation of the other. We found, by cell tracking and statistical analyses, that neutrophils migrated in a directional manner to "angiogenic hotspots" around the islet where endothelial sprouting occurs, which was confirmed in the in vitro model of angiogenesis and is dependent on CXCL12 signaling. Intimate interactions between neutrophils and neovessels were prevalent, and neutrophil depletion greatly hampered vessel growth. Macrophages were less motile and attained supportive positions around the neovessels. Here, we present two novel in vivo and in vitro imaging models to study leukocyte behavior and actions during angiogenesis. These models unveiled that neutrophil migration at a hypoxic site was guided by signals emanating from sprouting endothelium where these immune cells gathered at "angiogenic hotspots" at which vascular growth occurred.


Asunto(s)
Movimiento Celular/inmunología , Quimiocina CXCL12/inmunología , Macrófagos/inmunología , Neovascularización Fisiológica/inmunología , Neutrófilos/inmunología , Transducción de Señal/inmunología , Animales , Quimiocina CXCL12/genética , Ratones , Ratones Transgénicos , Neovascularización Fisiológica/genética , Transducción de Señal/genética
3.
Blood ; 126(17): 2016-26, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26286848

RESUMEN

Vascular endothelial growth factor A (VEGF-A) is upregulated during hypoxia and is the major regulator of angiogenesis. VEGF-A expression has also been found to recruit myeloid cells to ischemic tissues where they contribute to angiogenesis. This study investigates the mechanisms underlying neutrophil recruitment to VEGF-A as well as the characteristics of these neutrophils. A previously undefined circulating subset of neutrophils shown to be CD49d(+)VEGFR1(high)CXCR4(high) was identified in mice and humans. By using chimeric mice with impaired VEGF receptor 1 (VEGFR1) or VEGFR2 signaling (Flt-1tk(-/-), tsad(-/-)), we found that parallel activation of VEGFR1 on neutrophils and VEGFR2 on endothelial cells was required for VEGF-A-induced recruitment of circulating neutrophils to tissue. Intravital microscopy of mouse microcirculation revealed that neutrophil recruitment by VEGF-A versus by the chemokine macrophage inflammatory protein 2 (MIP-2 [CXCL2]) involved the same steps of the recruitment cascade but that an additional neutrophil integrin (eg, VLA-4 [CD49d/CD29]) played a crucial role in neutrophil crawling and emigration to VEGF-A. Isolated CD49d(+) neutrophils featured increased chemokinesis but not chemotaxis compared with CD49d(-) neutrophils in the presence of VEGF-A. Finally, by targeting the integrin α4 subunit (CD49d) in a transplantation-based angiogenesis model that used avascular pancreatic islets transplanted to striated muscle, we demonstrated that inhibiting the recruitment of circulating proangiogenic neutrophils to hypoxic tissue impairs vessel neoformation. Thus, angiogenesis can be modulated by targeting cell-surface receptors specifically involved in VEGF-A-dependent recruitment of proangiogenic neutrophils without compromising recruitment of the neutrophil population involved in the immune response to pathogens.


Asunto(s)
Integrina alfa4/metabolismo , Islotes Pancreáticos/metabolismo , Músculo Esquelético/metabolismo , Neutrófilos/metabolismo , Receptores CXCR4/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/fisiología , Animales , Western Blotting , Células Cultivadas , Femenino , Citometría de Flujo , Humanos , Integrina alfa4/genética , Islotes Pancreáticos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía por Video , Músculo Esquelético/citología , Neovascularización Fisiológica , Infiltración Neutrófila , Neutrófilos/citología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores CXCR4/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA