Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Anaesth ; 132(4): 735-745, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38336518

RESUMEN

BACKGROUND: Cigarette smoking is commonly reported among chronic pain patients in the clinic. Although chronic nicotine exposure is directly linked to nociceptive hypersensitivity in rodents, underlying neurobiological mechanisms remain unknown. METHODS: Multi-tetrode recordings in freely moving mice were used to test the activity of dopaminergic projections from the ventral tegmental area (VTA) to pyramidal neurones in the anterior cingulate cortex (ACC) in chronic nicotine-treated mice. The VTA→ACC dopaminergic pathway was inhibited by optogenetic manipulation to detect chronic nicotine-induced allodynia (pain attributable to a stimulus that does not normally provoke pain) assessed by von Frey monofilaments (force units in g). RESULTS: Allodynia developed concurrently with chronic (28-day) nicotine exposure in mice (0.36 g [0.0141] vs 0.05 g [0.0018], P<0.0001). Chronic nicotine activated dopaminergic projections from the VTA to pyramidal neurones in the ACC, and optogenetic inhibition of VTA dopaminergic terminals in the ACC alleviated chronic nicotine-induced allodynia in mice (0.06 g [0.0064] vs 0.28 g [0.0428], P<0.0001). Moreover, optogenetic inhibition of Drd2 dopamine receptor signalling in the ACC attenuated nicotine-induced allodynia (0.07 g [0.0082] vs 0.27 g [0.0211], P<0.0001). CONCLUSIONS: These findings implicate a role of Drd2-mediated dopaminergic VTA→ACC pathway signalling in chronic nicotine-elicited allodynia.


Asunto(s)
Giro del Cíngulo , Nicotina , Humanos , Ratones , Animales , Nicotina/farmacología , Hiperalgesia/inducido químicamente , Dopamina/metabolismo , Dolor
2.
J Neuroinflammation ; 20(1): 81, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36944965

RESUMEN

BACKGROUND: Long-term smoking is a risk factor for chronic pain, and chronic nicotine exposure induces pain-like effects in rodents. The anterior cingulate cortex (ACC) has been demonstrated to be associated with pain and substance abuse. This study aims to investigate whether ACC microglia are altered in response to chronic nicotine exposure and their interaction with ACC neurons and subsequent nicotine-induced allodynia in mice. METHODS: We utilized a mouse model that was fed nicotine water for 28 days. Brain slices of the ACC were collected for morphological analysis to evaluate the impacts of chronic nicotine on microglia. In vivo calcium imaging and whole-cell patch clamp were used to record the excitability of ACC glutamatergic neurons. RESULTS: Compared to the vehicle control, the branch endpoints and the length of ACC microglial processes decreased in nicotine-treated mice, coinciding with the hyperactivity of glutamatergic neurons in the ACC. Inhibition of ACC glutamatergic neurons alleviated nicotine-induced allodynia and reduced microglial activation. On the other hand, reactive microglia sustain ACC neuronal excitability in response to chronic nicotine, and pharmacological inhibition of microglia by minocycline or liposome-clodronate reduces nicotine-induced allodynia. The neuron-microglia interaction in chronic nicotine-induced allodynia is mediated by increased expression of neuronal CX3CL1, which activates microglia by acting on CX3CR1 receptors on microglial cells. CONCLUSION: Together, these findings underlie a critical role of ACC microglia in the maintenance of ACC neuronal hyperactivity and resulting nociceptive hypersensitivity in chronic nicotine-treated mice.


Asunto(s)
Hiperalgesia , Neuralgia , Nicotina , Animales , Ratones , Giro del Cíngulo/metabolismo , Hiperalgesia/inducido químicamente , Microglía/metabolismo , Neuralgia/metabolismo , Neuronas/metabolismo , Nicotina/toxicidad
3.
Biochem Pharmacol ; 206: 115293, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36241093

RESUMEN

BACKGROUND: Treatment of chronic pain is challenged by concurrent anxiety symptoms. Dexmedetomidine is known to produce sedation, analgesia, and anxiolysis. However, the neural mechanism of dexmedetomidine-elicited anxiolysis remains elusive. Here, we aimed to test the hypothesis that the anterior cingulate cortex might be involved in dexmedetomidine-induced anxiolysis in pain. METHODS: A common peroneal nerve ligation mouse model was used to test the dexmedetomidine-induced analgesia and anxiolysis by assessing mechanical allodynia, open-field, light-dark transition, and acoustic startle reflex tests. In vivo calcium signal fiber photometry and ex vivo whole-cell patch-clamp recordings were used to measure the excitability of glutamatergic neurons in anterior cingulate cortex. Modulation of glutamatergic neurons was performed by chemogenetic inhibition or activation via viral injection. RESULTS: Compared with vehicle, dexmedetomidine (4 µg/kg) alleviated mechanical allodynia (P < 0.001) and anxiety-like behaviors (P < 0.001). The glutamatergic neurons' excitability after dexmedetomidine administration was lower than that of the vehicle group (P = 0.001). Anxiety-like behaviors were rescued by inhibiting glutamatergic neurons in the model mice. Nociception-related anxiety-like behavior was induced by activation of glutamatergic neurons, which was rescued by dexmedetomidine. CONCLUSIONS: The reduction in glutamatergic neuronal activity in anterior cingulate cortex may be involved in dexmedetomidine-elicited anxiolysis in chronic pain.


Asunto(s)
Dolor Crónico , Dexmedetomidina , Traumatismos de los Nervios Periféricos , Ratones , Animales , Giro del Cíngulo , Hiperalgesia , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Ansiedad/tratamiento farmacológico , Neuronas
4.
Int Immunopharmacol ; 110: 108921, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35724606

RESUMEN

Primary and secondary hyperalgesia develop in response to chronic joint inflammation due to peripheral and central mechanisms. Synovial macrophage and spinal microglia are involved in pain sensitization in arthritis. The level of angiotensin II type 2 receptor (AT2R) is related to the severity of arthritis. This study aimed to determine the role of AT2R in primary and secondary hyperalgesia in joint inflammatory pain in mice. After intra-articular CFA injection, primary hyperalgesia in the ipsilateral knee joint was measured by pressure application meter and gait analysis, secondary hypersensitivity in ipsilateral hind-paw was measured by von-Frey and Hargreaves tests following a combination of global AT2R-deficient (Agtr2-/-) mice and AT2R pharmacological agonist C21. Synovial macrophage and spinal microglia were collected for flow cytometry. Morphological reconstruction of microglia was detected by immunostaining. AT2R expression was investigated by quantitative polymerase chain reaction and western blot. Neuronal hyperactivity was evaluated by c-Fos and CGRP immunostaining. We found that pain hypersensitivity and synovial inflammation in Agtr2-/- mice were significantly exacerbated compared with wild-type mice; conversely, systemically administrated C21 attenuated both of the symptoms. Additionally, spinal microglia were activated, and an abundant increase of spinal AT2R was expressed on activated microglia in response to peripheral joint inflammation. Intrathecally-administrated C21 reversed the secondary hypersensitivity, accompanied by alleviation of spinal microglial activation, spinal neuronal hyperactivity, and calcitonin gene-related peptide content. These findings revealed a beneficial role of AT2R activating stimulation against pain hypersensitivity in joint inflammatory pain via direct modulation of synovial macrophage and spinal microglial activity.


Asunto(s)
Artritis , Receptor de Angiotensina Tipo 2 , Animales , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Imidazoles , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones , Microglía/metabolismo , Dolor/tratamiento farmacológico , Dolor/metabolismo , Receptor de Angiotensina Tipo 2/agonistas , Receptor de Angiotensina Tipo 2/metabolismo , Médula Espinal/metabolismo , Sulfonamidas , Tiofenos
6.
Water Environ Res ; 89(8): 703-713, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28276318

RESUMEN

This study aimed at investigating the biosorption of copper(II) from aqueous solutions by sclerotiogenic Aspergillus oryzae G15. Potentiometric titration analysis results indicated that carboxyl group was mainly responsible for Cu(II) adsorption. Sclerotia were a better biosorbent than mycelia, which could be ascribed to the higher amount of carboxyl sites exposed after differentiation. Langmuir isotherm model fitted well the absorption process of mycelia and sclerotia with the maximum theoretical sorption capacities of 35.34 and 73.53 mg/g, respectively. Scanning electron microscopy coupled with energy dispersive X-ray analysis confirmed that there was surface biosorption of Cu(II) on the adsorbents. Based on the fourier transform infrared spectroscopy analyses results, it could be proposed that the increased sorption capacity of sclerotia was due to increased functional groups related to the biosorption process. Cu(II)-loaded biosorbents could be regenerated and reused, which indicated that A. oryzae G15 could be considered as an alternative for removing Cu(II) from wastewater.


Asunto(s)
Aspergillus oryzae/metabolismo , Cobre/metabolismo , Adsorción , Cobre/química , Concentración de Iones de Hidrógeno , Microscopía Electroquímica de Rastreo , Contaminantes Químicos del Agua/química
7.
Folia Microbiol (Praha) ; 62(4): 295-304, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28132138

RESUMEN

Aspergillus oryzae G15 was cultured on Czapek yeast extract agar medium containing different concentrations of copper and lead to investigate the mechanisms sustaining metal tolerance. The effects of heavy metals on biomass, metal accumulation, metallothionein (MT), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were evaluated. Cu and Pb treatment remarkably delayed sclerotial maturation and inhibited mycelial growth, indicating the toxic effects of the metals. Cu decreased sclerotial biomass, whereas Pb led to an increase in sclerotial biomass. G15 bioadsorbed most Cu and Pb ions on the cell surface, revealing the involvement of the extracellular mechanism. Cu treatment significantly elevated MT level in mycelia, and Pb treatment at concentrations of 50-100 mg/L also caused an increase in MT content in mycelia. Both metals significantly increased MDA level in sclerotia. The variations in MT and MDA levels revealed the appearance of heavy metal-induced oxidative stress. The activities of SOD, CAT, and POD varied with heavy metal concentrations, which demonstrated that tolerance of G15 to Cu and Pb was associated with an efficient antioxidant defense system. In sum, the santioxidative detoxification system allowed the strain to survive in high concentrations of Cu and Pb. G15 depended mostly on sclerotial differentiation to defend against Pb stress.


Asunto(s)
Aspergillus oryzae/efectos de los fármacos , Cobre/farmacología , Plomo/farmacología , Aspergillus oryzae/genética , Aspergillus oryzae/crecimiento & desarrollo , Aspergillus oryzae/metabolismo , Catalasa/genética , Catalasa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Malondialdehído/metabolismo , Micelio/efectos de los fármacos , Micelio/genética , Micelio/crecimiento & desarrollo , Micelio/metabolismo , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
8.
World J Microbiol Biotechnol ; 30(5): 1519-25, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24307499

RESUMEN

Penicillium thomii PT95 strain was able to form abundant orange, sand-shaped sclerotia in which carotenoids were accumulated. The aim of this work was to determine the effects of copper-induced oxidative stress on the sclerotial differentiation and antioxidant properties of PT95 strain. The results showed that the time of exudates initiation, sclerotial initiation and sclerotial maturation of PT95 strain were advanced in 1-2 days under the copper-induced oxidative stress growth conditions. The analytical results of sclerotial biomass, carotenoids content in sclerotia showed that copper-induced oxidative stress favored the sclerotial differentiation and biosynthesis of carotenoids. Under the copper-induced oxidative stress growth conditions, the total phenolics content and DPPH free radical scavenging activity of sclerotia of this fungus were decreased as compared with the control. However, the oxidative stress induced by a lower amount of CuSO4 in media could enhance significantly the reducing power of sclerotia.


Asunto(s)
Antioxidantes/metabolismo , Carotenoides/metabolismo , Sulfato de Cobre/farmacología , Estrés Oxidativo/efectos de los fármacos , Penicillium/crecimiento & desarrollo , Secuencia de Bases , Biomasa , Medios de Cultivo/química , ADN de Hongos , Datos de Secuencia Molecular , Penicillium/clasificación , Fenoles/metabolismo , Microbiología del Suelo
9.
J Basic Microbiol ; 54(12): 1395-402, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24002994

RESUMEN

Penicillium thomii Q1 strain was able to form abundant orange, sand-shaped sclerotia in which carotenoids were accumulated. The aim of this work was to determine the effects of copper-induced oxidative stress on the sclerotial differentiation, biosynthesis of some endogenous antioxidants, and the activities of some antioxidative enzymes of Q1 strain. The results showed that the oxidative stress induced by copper was clearly dependent on the CuSO4 concentrations in media, and characterized by the initiation of lipid peroxidation. Under the copper-induced oxidative stress conditions, the time of exudates initiation, sclerotial initiation and sclerotial maturation of Q1 strain were advanced in 1-2 days. The analytical results of sclerotial biomass, carotenoids, and ascorbate contents showed that copper-induced oxidative stress favored the sclerotial differentiation and biosynthesis of carotenoids and ascorbate. The oxidative stress induced by a lower amount of CuSO4 in media could enhance significantly the superoxide dismutase and catalase activities of Q1 strain.


Asunto(s)
Antioxidantes/metabolismo , Cobre/metabolismo , Micelio/metabolismo , Penicillium/metabolismo , Ácido Ascórbico/biosíntesis , Biomasa , Carotenoides/biosíntesis , Catalasa/metabolismo , Peroxidación de Lípido , Estrés Oxidativo , Superóxido Dismutasa/metabolismo
10.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(8): 2055-9, 2013 Aug.
Artículo en Chino | MEDLINE | ID: mdl-24159845

RESUMEN

NaYF4 : Yb3+, Er3+, Tm3+ nanoparticles were prepared by microemulsion-hydrothermal method. Crystal phase, morphology and structure of the samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The luminescence properties were studied by up-conversional fluorescence spectroscopy. The XRD patterns of as-prepared samples were in agreement with the PDF # 77-2042 of cubic NaYF4. SEM images of the particles showed that the samples were cotton-like spherical in shape and which were assembled by smaller nano-particles. The average size was 120 nm, while the shape was regular and the particle size was homogeneous. Under the excitation of 980 nm, the as-prepared particles could emit blue (438 and 486 nm), green (523 and 539 nm) and red (650 nm) light simultaneously. It can be seen from the color coordinates figure (CIE) that when doping concentration ratio of Tm3+ and E3+ increased from 0 to 2, the whole emitting light color of samples movedto green region. While the ratio was 1 : 1, pseudo white light was obtained. As the ratio changed from 2 to 7, the luminous color was moved to red region.

11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(7): 1758-62, 2013 Jul.
Artículo en Chino | MEDLINE | ID: mdl-24059169

RESUMEN

Europium doped CaMoO4 and bismuth co-doped CaMoO4 : Eu3+ phosphors were prepared via microemulsion-hydrothermal method. The structure, morphology and luminescence properties of samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescence spectroscopy, respectively. The XRD patterns of as-prepared samples were in agreement with the PDF # 29-0351 of CaMoO4, which indicated that the phosphor possessed tetragonal crystal structure. SEM images showed that the samples were basically flake in shape and their average size was 1.5-2.5 microm. The critical molar concentration of activator (Eu3+) in CaMoO4 : Eu3+ was 5%, and the predominant peak of CaMoO4 : Eu3+ located at 616 nm, corresponding to the 5D0 -->7 F2 electronic dipole transition of Eu3+. The photoluminescence color can be tuned from orange-yellow (0.514, 0.537) to white (0.339, 0.333) by adjusting the doping concentrations of Eu3+ ions. To enhance the red emission intensity of Eu3+, Bi3+ was used to co-dope CaMoO4 : Eu3+ as sensitizers. When the concentration of Bi3+ is 3%, luminescence intensity was maximum. The chromaticity coordinates (CIE) varied from orange (0.497, 0.347) to red (0.585, 0.349) with increasing the content of Bi3+.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...