Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gene ; 909: 148302, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38401833

RESUMEN

Changes in circulating let-7c were significantly associated with the alter in lipid profile, but its role in intracellular lipid metabolism remains unknown. This work was conducted to explore the effects of let-7c on the lipid accumulation in macrophages and uncover the underlying mechanism. Our results showed that let-7c inhibition relieved atherosclerosis progression in apoE-/- mice. In ox-LDL-treatment macrophages, let-7c knockdown suppressed lipid accumulation but does no affect cholesterol intake. Consistent with this, overexpression of let-7c promoted lipid accumulation by reducing the expression of LXRα and ABCA1/G1. Mechanistically, let-7c targeted PGC-1α to repress the expression of LXRα and ABCA1/G1, thereby regulating cholesterol homeostasis in macrophages. Taken together, these findings suggest that antagonism of let-7c reduces atherosclerosis and macrophage lipid accumulation through the PGC-1α/LXRα/ABCA1/G1 axis.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Animales , Ratones , Colesterol/metabolismo , Macrófagos/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo , Hipercolesterolemia/metabolismo , Metabolismo de los Lípidos/genética , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo
2.
J Cell Mol Med ; 27(24): 4155-4170, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37905351

RESUMEN

Both lipid accumulation and inflammatory response in lesion macrophages fuel the progression of atherosclerosis, leading to high mortality of cardiovascular disease. A therapeutic strategy concurrently targeting these two risk factors is promising, but still scarce. Oridonin, the bioactive medicinal compound, is known to protect against inflammatory response and lipid dysfunction. However, its effect on atherosclerosis and the underlying molecular mechanism remain elusive. Here, we showed that oridonin attenuated atherosclerosis in hyperlipidemic ApoE knockout mice. Meanwhile, we confirmed the protective effect of oridonin on the oxidized low-density lipoprotein (oxLDL)-induced foam macrophage formation, resulting from increased cholesterol efflux, as well as reduced inflammatory response. Mechanistically, the network pharmacology prediction and further experiments revealed that oridonin dramatically facilitated the expression of peroxisome proliferator-activated receptor gamma (PPARγ), thereby regulating liver X receptor-alpha (LXRα)-induced ATP-binding cassette transporter A1 (ABCA1) expression and nuclear factor NF-kappa-B (NF-κB) translocation. Antagonist of PPARγ reversed the cholesterol accumulation and inflammatory response mediated by oridonin. Besides, RNA sequencing analysis revealed that fatty acid binding protein 4 (FABP4) was altered responding to lipid modulation effect of oridonin. Overexpression of FABP4 inhibited PPARγ activation and blunted the benefit effect of oridonin on foam macrophages. Taken together, oridonin might have potential to protect against atherosclerosis by modulating the formation and inflammatory response in foam macrophages through FABP4/PPARγ signalling.


Asunto(s)
Aterosclerosis , PPAR gamma , Ratones , Animales , PPAR gamma/metabolismo , Macrófagos/metabolismo , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Colesterol/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , FN-kappa B/metabolismo , Ratones Noqueados para ApoE , Aterosclerosis/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Receptores X del Hígado/metabolismo
3.
Signal Transduct Target Ther ; 8(1): 304, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37582956

RESUMEN

Mitochondria are dynamic organelles with multiple functions. They participate in necrotic cell death and programmed apoptotic, and are crucial for cell metabolism and survival. Mitophagy serves as a cytoprotective mechanism to remove superfluous or dysfunctional mitochondria and maintain mitochondrial fine-tuning numbers to balance intracellular homeostasis. Growing evidences show that mitophagy, as an acute tissue stress response, plays an important role in maintaining the health of the mitochondrial network. Since the timely removal of abnormal mitochondria is essential for cell survival, cells have evolved a variety of mitophagy pathways to ensure that mitophagy can be activated in time under various environments. A better understanding of the mechanism of mitophagy in various diseases is crucial for the treatment of diseases and therapeutic target design. In this review, we summarize the molecular mechanisms of mitophagy-mediated mitochondrial elimination, how mitophagy maintains mitochondrial homeostasis at the system levels and organ, and what alterations in mitophagy are related to the development of diseases, including neurological, cardiovascular, pulmonary, hepatic, renal disease, etc., in recent advances. Finally, we summarize the potential clinical applications and outline the conditions for mitophagy regulators to enter clinical trials. Research advances in signaling transduction of mitophagy will have an important role in developing new therapeutic strategies for precision medicine.


Asunto(s)
Mitocondrias , Mitofagia , Humanos , Mitofagia/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Homeostasis , Transducción de Señal/genética
4.
Wiley Interdiscip Rev RNA ; 14(4): e1767, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36420580

RESUMEN

Cells are exposed to various pathological stimulus within the cardiovascular system that challenge cells to adapt and survive. Several of these pathological stimulus alter the normal function of the endoplasmic reticulum (ER), leading to the accumulation of unfolded and misfolded proteins, thus triggering the unfolded protein response (UPR) to cope with the stress or trigger apoptosis of damaged cells. Downstream components of the UPR regulate transcription and translation reprogramming to ensure selective gene expression in response to pathological stimulus, including the expression of non-coding RNAs (ncRNAs). The ncRNAs play crucial roles in regulating transcription and translation, and their aberrant expression is associated with the development of cardiovascular disease (CVD). Notably, ncRNAs and ER stress can modulate each other and synergistically affect the development of CVD. Therefore, studying the interaction between ER stress and ncRNAs is necessary for effective prevention and treatment of CVD. In this review, we discuss the UPR signaling pathway and ncRNAs followed by the interplay regulation of ER stress and ncRNAs in CVD, which provides further insights into the understanding of the pathogenesis of CVD and therapeutic strategies. This article is categorized under: RNA in Disease and Development > RNA in Disease.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/metabolismo , Estrés del Retículo Endoplásmico/genética , Respuesta de Proteína Desplegada , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , ARN no Traducido/genética , ARN no Traducido/metabolismo
5.
Front Pharmacol ; 13: 1023878, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36278233

RESUMEN

Background: Astragalus mongholicus polysaccharides (APS) have anti-inflammatory, antioxidant and immunomodulatory effects. Recent studies have demonstrated the epigenetic regulation of N6-methyladenosine (m6A) in the development of inflammation. However, the effect of APS on m6A modification is unclear. Here, for the first time, we investigate the mechanism of m6A modification in APS regulation of THP-1 macrophage inflammation. Methods: We treated LPS-induced THP-1 macrophages with APS at different concentrations and times, and detected IL-6 mRNA and protein levels by quantitative real-time PCR (qRT-PCR) and western blot, respectively. The m6A modification level was detected by m6A quantification kit. The proteins that regulate m6A modification were screened by western blot. Wilms' tumor 1-associating protein (WTAP) was overexpressed in APS-treated THP-1 macrophages and the m6A modification level and IL-6 expressions were detected. Results: These findings confirmed that APS significantly abolished LPS-induced IL-6 levels in THP-1 macrophages. Meanwhile, APS reduced m6A modification levels and WTAP gene expression in THP-1 macrophages. Further overexpression of WTAP can significantly reverse APS-induced m6A modification level and IL-6 expression. Mechanistically, APS regulates IL-6 expression through WTAP-mediated p65 nuclear translocation. Conclusion: Overall, our study suggested that WTAP mediates the anti-inflammatory effect of APS by regulating m6A modification levels in THP-1 macrophages. This study reveals a new dimension of APS regulation of inflammation at the epigenetic level.

6.
Mater Today Bio ; 14: 100236, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35341094

RESUMEN

Vulnerable atherosclerotic plaques of the artery wall that pose a significant risk of cardio-cerebral vascular accidents remain the global leading cause of morbidity and mortality. Thus, early delineation of vulnerable atherosclerotic plaques is of clinical importance for prevention and treatment. The currently available imaging technologies mainly focus on the structural assessment of the vascular wall. Unfortunately, several disadvantages in these strategies limit the improvement in imaging effect. Nanoparticle technology is a novel diagnostic strategy for targeting and imaging pathological biomarkers. New functionalized nanoparticles that detect hallmarks of vulnerable plaques are promising for advance further control of this critical illness. The review aims to address the current opportunities and challenges for the use of nanoparticle technology in imagining vulnerable plaques.

7.
Org Lett ; 23(21): 8153-8157, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34623166

RESUMEN

The catalytic enantioselective desymmetrizing bromoaminocyclization of prochiral cyclohexa-1,4-dienes has been achieved by using chiral anion phase-transfer catalysis, providing a range of enantioenriched cis-3a-arylhydroindoles bearing an all-carbon quaternary stereocenter in good yields (up to 78%) and excellent enantioselectivities (up to 97% ee). Furthermore, the potential application of this methodology to natural product total synthesis was demonstrated by the asymmetric synthesis of (+)-Mesembrane.

8.
Front Cardiovasc Med ; 8: 688546, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34179148

RESUMEN

Maintaining cholesterol homeostasis is essential for normal cellular and systemic functions. Long non-coding RNAs (lncRNAs) represent a mechanism to fine-tune numerous biological processes by controlling gene expression. LncRNAs have emerged as important regulators in cholesterol homeostasis. Dysregulation of lncRNAs expression is associated with lipid-related diseases, suggesting that manipulating the lncRNAs expression could be a promising therapeutic approach to ameliorate liver disease progression and cardiovascular disease (CVD). However, given the high-abundant lncRNAs and the poor genetic conservation between species, much work is required to elucidate the specific role of lncRNAs in regulating cholesterol homeostasis. In this review, we highlighted the latest advances in the pivotal role and mechanism of lncRNAs in regulating cholesterol homeostasis. These findings provide novel insights into the underlying mechanisms of lncRNAs in lipid-related diseases and may offer potential therapeutic targets for treating lipid-related diseases.

9.
J Org Chem ; 85(4): 1882-1893, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31880445

RESUMEN

The catalytic asymmetric halocyclization of alkene is a powerful and straightforward strategy for the synthesis of chiral heterocyclic compounds. Herein, an effective approach to chiral benzoxazine derivatives through organocatalyzed chlorocyclization of o-vinylanilides was reported. This method provides facile access to a series of chiral benzoxazines in good to excellent yields (up to 99% yield) and with high-level enantiocontrol (up to 92% ee).

10.
Oncol Rep ; 38(1): 53-62, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28560391

RESUMEN

Fisetin (3,3',4',7-tetrahydroxyflavone), a natural abundant flavonoid, is produced in different vegetables and fruits. Fisetin has been reported to relate to various positive biological effects, including anti-proliferative, anticancer, anti-oxidative and neuroprotective effects. Dopamine receptors (DRs) belonging to G protein­coupled receptor family, are known as the target of ~50% of all modern medicinal drugs. DRs consist of various proteins, functioning as transduction of intracellular signals for extracellular stimuli. We found that fisetin performed as DR2 agonist to suppress liver cancer cells proliferation, migration and invasion. Caspase-3 signaling was activated to induce apoptosis for fisetin administration. Furthermore, TGF­ß1 was also inhibited in fisetin-treated liver cancer cells, reducing epithelial-mesenchymal transition (EMT). Additionally, fisetin downregulated VEGFR1, p-ERK1/2, p38 and pJNK, ameliorating liver cancer progression. In vivo, the orthotopically implanted tumors from mice were inhibited by fisetin adminisatration accompanied by prolonged survival rate and higher levels of dopamine. Together, the results indicated a novel therapeutic strategy to suppress liver cancer progression associated with DR2 regulation, indicating that dopamine might be of importance in liver cancer progression.


Asunto(s)
Carcinoma Hepatocelular/prevención & control , Proliferación Celular/efectos de los fármacos , Flavonoides/farmacología , Neoplasias Hepáticas/prevención & control , Receptores Dopaminérgicos/química , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Flavonoles , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , FN-kappa B/metabolismo , Receptores Dopaminérgicos/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...