Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Geochem Health ; 46(1): 19, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38147168

RESUMEN

Antimony (Sb) and arsenic (As) contamination in agricultural soil poses human health risks through agricultural products. Soil washing with degradable low molecular weight organic acids (LMWOAs) is an eco-friendly strategy to remediate agricultural soils. In this study, three eco-friendly LMWOAs, oxalic acid (OA), tartaric acid (TA), and citric acid (CA), were used to treat Sb and As co-contaminated agricultural soil from Xikuangshan mine area. The OA, TA, and CA washed out 18.4, 16.8, and 26.6% of Sb and 15.3, 19.9, and 23.8% of As from the agricultural soil, with CA being the most efficient reagent for the soil washing. These organic acids also led to pH decline and macronutrients losses. Fraction analysis using a sequential extraction procedure showed that the three organic acids targeted and decreased the specifically sorbed (F2) (by 19.3-37.6% and 2.41-23.5%), amorphous iron oxide associated (F3) (by 49.1-61.2% and 51.2-70.2%), and crystallized iron oxide associated (F4) (by 12.3-26.0% and 26.1-29.1%) Sb and As. The leachability of Sb and As, as well as their concentrations and bioconcentration factor (BCF) in vegetables reduced due to the soil washing. It demonstrated that the bioavailability of both the elements was decreased by the organic acids washing. The concentrations of Sb and As in typical vegetable species cultivated in CA washed soil were less than the threshold value for consumption safety, while those in OA and TA washed soils were still higher than the value, suggesting that only CA is a potential washing reagent in soil washing for Sb- and As-contaminated agricultural soil.


Asunto(s)
Arsénico , Suelo , Humanos , Antimonio , Disponibilidad Biológica , Compuestos Orgánicos , Ácido Oxálico , Ácido Cítrico
2.
Chemosphere ; 327: 138335, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36948256

RESUMEN

Applying beneficial bacteria in rice rhizosphere to manage heavy metal behaviour in soil-plant system is a promising strategy. However, colonization/domination of exogenous bacteria in rhizosphere soils remains a challenge. In this study, a bacterium Ochrobactrum anthropi, which showed the potential of transforming soluble SbIII into Sb2O3 mineral, was repeatedly inoculated into the rice rhizosphere weekly throughout the rice growth period, and the colonization of this bacterium in rice rhizosphere soils and its effect on Sb accumulation in rice plants were investigated. Results showed that repeated inoculants changed the native bacterial community in rhizosphere soils in comparison with the control, but the inoculated O. anthropi was not identified as an abundant species. With weekly inoculation, the decrease in Sb in rice roots and straws was maintained throughout the rice growth period, with decrease percentages ranging from 36 to 49% and 33-35%. In addition, decrease percentages of Sb in husks and grains at the maturing stage obtained 34 and 37%, respectively. Furthermore, the XRD identified the formation of valentinite (Sb2O3) on rice root in inoculation treatment, and the decrease percentages in aqueous SbIII in rhizosphere were 53-100% through the growth period. It demonstrated that weekly inoculants performed their temporary activity of valentinite formation, and reduced Sb accumulation in rice plants efficiently. This study suggests that regardless of successful colonization, repeated inoculation of beneficial bacteria is an option to facilitate the positive effects of inoculated bacteria in the management of heavy metal behaviour.


Asunto(s)
Metales Pesados , Oryza , Contaminantes del Suelo , Antimonio/análisis , Contaminantes del Suelo/análisis , Raíces de Plantas/química , Bacterias , Rizosfera , Suelo
3.
J Hazard Mater ; 447: 130755, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36640511

RESUMEN

Arsenic (As) and cadmium (Cd) often coexist in paddy soils. Nano-ferrihydrite colloidal particles (NFPs) are ubiquitous at redox active interfaces of the paddy system and are well-known to play a critical role in controlling the solubility and bio-availability of As and Cd. However, the mutual interaction between As and Cd on NFPs remains elusive. Herein, batch experiments and in-situ spectroscopic techniques were used to investigate the effects of the interaction pattern (sequential reaction) of Cd(II) and As(V) on their respective adsorption on the surfaces of NFPs. Two scenarios were designed: Cd(II) pre-saturated NFPs and As(V) pre-saturated NFPs. Adsorption of Cd(II) was increased by 1.67, 4.08, and 5.21 times in As(V)-saturated NFPs, but only by 1.05, 1.11, and 1.15 times for As(V) in Cd(II)-saturated NFPs. Further, we determined the pH-dependent mutually beneficial cooperation pathways as mediated by the surface of NFPs. At lower pH (5), As(V) tended to promote Cd(II) adsorption, whereas Cd(II) tended to enhance As(V) adsorption at higher pH (> 5.5). X-ray photoelectron spectroscopy (XPS) indicated that both pre-saturated Cd(II) and As(V) altered the local coordination environment of their counterpart ions. Furthermore, results from in-situ attenuated total reflection-Fourier-transform infrared spectroscopy (ATR-FTIR) and second derivative peak shape fitting revealed two types of ternary surface complexes, namely Cd(II)-bridged and As(V)-bridged complexes, which were responsible for the distinct Cd(II) and As(V) co-adsorption behavior on the surface of NFPs under different conditions. These findings help us understand how co-presence Cd and As behave in an iron-rich geological setting and will aid in the development of related restoration technologies.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 278: 121290, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35526440

RESUMEN

Detecting and imaging intracellular hypochlorous acid (HClO) is of great importance owning to its prominent role in numerous pathological and physiological processes. In this contribution, a novel AIE-based fluorescent chemosensor has been developed by employing a benzothiazole derivative. The synthesized probe displayed remarkable ratiometric fluorescent response to HClO with a large emission shift (139 nm), resulting in naked-eye fluorescence changes from red to blue. Under the optimal conditions, this probe was capable of quantitatively detecting HClO within 10 s, and possessed good sensitivity and high selectivity toward HClO over other biologically relevant species. Moreover, it has been successfully utilized to image the exogenous and endogenous HClO in living cells through dual channels, and conveniently detect hypochlorous acid solution on test strips with better accuracy, demonstrating its potential for monitoring HClO in biological and environment fields.


Asunto(s)
Colorantes Fluorescentes , Ácido Hipocloroso , Animales , Fluorescencia , Ratones , Células RAW 264.7
5.
Environ Geochem Health ; 44(12): 4253-4268, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34982347

RESUMEN

A simulated acid rain (SAR) experiment on leaching of antimony (Sb) and arsenic (As) in three soil types including paddy soils (PS), vegetable soils (VS) and slag based soils (SS) from Xikuangshan (XKS) Sb mine area was conducted. The SAR at pH 2.5, 3.5, 4.5 and 5.6 were sprayed to soil columns with intermittent pattern in a period of 50 days. Through the spraying duration, leaching Sb in PS, VS and SS showed decreasing trends regardless of pH values in SAR and were in the ranges of 0.026-0.064 mg L-1, 0.19-2.18 mg L-1 and 11.8-32.4 mg L-1, respectively. By contrast, leaching As in these three soil types continuously increased at the initial five spraying times and then deeply decreased afterward, with ranges being 0-0.007 mg L-1, 0.001-0.071 mg L-1 and 0.17-1.07 mg L-1, respectively. The leaching Sb in all the three soil types were extremely higher than the reference value in grade IV (0.01 mg L-1) for groundwater quality of China (GB/T 14,848-2017). For leaching As, peck values in VS and all the values in SS were also greater than the corresponding reference value (0.05 mg L-1). This indicated that leaching Sb and As could pollute the groundwater in XKS Sb mine area, especially those in slag based soils. The total leaching losses of Sb and As were affected by pH ambiguously, such as SAR at pH 2.5, 5.6 and 2.5 induced the greatest losses of Sb in PS, VS and SS, and pH 3.5, 5.6 and 2.5 resulted in the greatest leaching losses of As in these soils. After SAR treatment, the specific sorbed and Fe/Mn oxide-associated Sb and As significantly decreased. It demonstrated that these two fractions of both Sb and As were involved in leaching losses. The present study also found that the SAR treatment resulted in soil acidification in all the three soil types. In addition, available N, P and K in all the SAR treatments decreased regardless of pH values, except for available N and P in PS.


Asunto(s)
Lluvia Ácida , Arsénico , Contaminantes del Suelo , Antimonio/análisis , Arsénico/análisis , Suelo , Contaminantes del Suelo/análisis , Verduras
6.
Environ Sci Pollut Res Int ; 28(7): 7828-7839, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33040291

RESUMEN

Iron (Fe) fertilizer can reduce cadmium (Cd) uptake and toxicity in rice, but the underlying mechanisms of Cd mitigation by different fertilizers are poorly understood. Here, pot experiments in rice were conducted to characterize the effects of four types of foliar-applied Fe fertilizer (chelated ferrous Fe, ferric Fe, ionic ferrous Fe, and ferric Fe) at three doses (20, 50, and 100 mg L-1) on photosynthetic capacity, antioxidant ability, yield, and Cd accumulation in Cd-contaminated soil. The results showed that foliar Fe application increased the net photosynthesis rate by 19.3%, peroxidase (POD) by 18.2%, superoxide dismutase (SOD) by 26.9%, and catalase (CAT) by 19.6%, and led to a 7.2% increase in grain yield compared with the control. Moreover, foliar Fe application significantly reduced Cd accumulation by 15.9% in brown rice and decreased the translocation of Cd from roots to other plant tissues. Overall, application of moderate doses (50 mg L-1) of chelated ferrous Fe was the most effective method for reducing Cd uptake (decreasing the Cd concentration in brown rice by 29.0%) and toxicity in rice (decreasing malondialdehyde by 23.2% and increasing POD, SOD, and CAT by 54.4%, 51.6%, and 45.7%, respectively), which may stem from the fact that chelated ferrous Fe was a more stable and bioavailable source of Fe for rice. The Cd concentration in rice had negative relationship with Fe concentration, and the translocation of Cd from root to the other tissues was reduced by the higher Fe nutrition status in leaf, suggesting that a high Fe supply may decrease Cd content by inhibiting the expression of the Fe transport system. These results indicate that foliar application of chelated ferrous Fe provides a promising alternative approach for enhancing growth and controlling Cd accumulation in rice plants. Furthermore, these results advance our understanding of the associations between plant Fe nutrition status and Cd accumulation.


Asunto(s)
Oryza , Contaminantes del Suelo , Antioxidantes , Cadmio/análisis , Fertilizantes , Hierro/análisis , Suelo , Contaminantes del Suelo/análisis
7.
Water Sci Technol ; 82(11): 2592-2602, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33339811

RESUMEN

Camellia oleifera shell-based activated carbon (COSAC) was prepared by H3PO4 activation method and further used to remove U(VI) from the aqueous solution in a batch system. This research examined the influence of various factors affecting U(VI) removal, including contact time, pH, initial U(VI) concentration, and temperature. The results showed that the U(VI) adsorption capacity and removal efficiency reached 71.28 mg/g and 89.1% at the initial U(VI) concentration of 160 mg/L, temperature of 298 K, pH 5.5, contact time of 60 min, and COSAC dosage of 2.0 g/L. The pseudo-first-order, pseudo-second-order, and intraparticle diffusion equations were used to identify the optimum model that can describe the U(VI) adsorption kinetics. The pseudo-second-order kinetics model performed better in characterizing the adsorption system compared with the pseudo-first-order and intraparticle diffusion models. Isotherm data were also discussed with regard to the appropriacy of Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models. The Langmuir model described the U(VI) adsorption process the best with a maximum adsorption capacity of 78.93 mg/g. Thermodynamic analysis (ΔG0 < 0, ΔH0 > 0, and ΔS0 > 0) indicated that the U(VI) adsorption process is endothermic and spontaneous. All the results imply that COSAC has a promising application in the removal or recovery of U(VI) from aqueous solutions.


Asunto(s)
Camellia , Uranio , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Concentración de Iones de Hidrógeno , Cinética , Temperatura , Termodinámica
8.
J Hazard Mater ; 389: 122091, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-31972529

RESUMEN

Roxarsone is a phenyl-substituted arsonic acid comprising both arsenate and benzene rings. Few adsorbents are designed for the effective capture of both the organic and inorganic moieties of ROX molecules. Herein, nano zerovalent iron (nZVI) particles were incorporated on the surface of sludge-based biochar (SBC) to fabricate a dual-affinity sorbent that attracts both the arsenate and benzene rings of ROX. The incorporation of nZVI particles significantly increased the binding affinity and sorption capacity for ROX molecules compared to pristine SBC and pure nZVI. The enhanced elimination of ROX molecules was ascribed to synergetic adsorption and degradation reactions, through π-π* electron donor/acceptor interactions, H-bonding, and As-O-Fe coordination. Among these, the predominate adsorption force was As-O-Fe coordination. During the sorption process, some ROX molecules were decomposed into inorganic arsenic and organic metabolites by the reactive oxygen species (ROS) generated during the early stages of the reaction. The degradation pathways of ROX were proposed according to the oxidation intermediates. This work provides a theoretical and experimental basis for the design of adsorbents according to the structure of the target pollutant.


Asunto(s)
Carbón Orgánico/química , Hierro/química , Nanocompuestos/química , Roxarsona/aislamiento & purificación , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Restauración y Remediación Ambiental/métodos , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Roxarsona/química , Contaminantes del Suelo/química , Contaminantes del Suelo/aislamiento & purificación , Contaminantes Químicos del Agua/química
9.
Environ Pollut ; 258: 113670, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31806459

RESUMEN

Iron plaque (IP) is crucial in mitigating antimony (Sb) uptake and accumulation in rice plants, while, few studies focused on the effect of the iron plaque-associated Sb resistant bacteria on IP and Sb uptake into rice plants. Here, the effect of a Sb resistant bacterium (GenBank accession No. MH345840, with potential of conversion soluble Sb(III) into insoluble Sb2O3) on IP and Sb(III)/Sb(V) uptake under hydroponic condition was investigated. The results showed that in the presence of Sb(III), a large quantity of bacterial cells consorted with IP on rice roots, the bacterial inoculum altered the IP fraction distribution without enhancing its amount. However, it reduced Sb(III) uptake into rice roots. On contrary, seldom bacterial cells associated with the IP on rice roots in the presence of the Sb(V), the bacterial inoculum increased the IP amount slightly, and did not decline the Sb(V) uptake into rice roots. It also showed that the bacterial inoculum decreased Sb concentrations in rice shoots greatly in both Sb(III) and Sb(V) supplied treatments.


Asunto(s)
Antimonio , Oryza/microbiología , Contaminantes del Suelo , Adaptación Fisiológica , Bacterias , Hierro , Oryza/fisiología , Raíces de Plantas , Plantones , Microbiología del Suelo
10.
Environ Sci Pollut Res Int ; 26(17): 17655-17665, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31028622

RESUMEN

Heavy metals including copper (Cu), zinc (Zn), cadmium (Cd), chromium (Cr), lead (Pb), and arsenic (As) were investigated in 89 pairs of rice plant and paddy soils around Dongting Lake area, China. Rice plants and soils were collected with GPS device, and heavy metal contents in different rice plant tissues and soils were measured. The aim of the present study was to assess the heavy metal pollution and translocation in the whole soil-rice system, including the consequent human health risk for residents. According to the indices of average geoaccumulation (Igeo) of the studied elements, paddy soils in study area were moderately polluted by Cd, lowly polluted by Pb, and not polluted by Cu, Zn, Cr, and As. Considering the much higher concentrations of studied elements in roots than in other tissues of rice plants, a great mass of these elements was assumed to be confined in the roots. The low translocation factors from root to shoot (Tfroot-shoot) of all the studied heavy metals (0.04-0.74) underpinned this. The high translocation factors from soil to root (Tfsoil-root) of Cd (9.12), As (4.38), and Zn (2.05) indicated the high bioavailability of these heavy metals for rice plant. The health risk assessment using target hazard quotients (THQs) model indicated that Cd (5.17 for adults and 4.49 for children respectively) and As (3.61 for adults and 3.14 for children respectively) could cause human health risk both for adults and children. Further, given the rate of individual THQ values exceeding one, Cu might also be considered as a potential human health dangerous element in the study area. It was worth noting that as one of the main pollutants, Pb did not show human health risk through rice grain consumption due to its low Tf values in soil-rice system. However, the risk identification of As using comparisons of measured concentrations with risk screening value in Chinese paddy soil standard (GB15618-2018) was not consistent with the human health risk assessment result. This might indicate that site-specific risk screening values of As in China is in demand.


Asunto(s)
Agricultura , Exposición a Riesgos Ambientales/análisis , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Adulto , Arsénico , Cadmio/análisis , Niño , China , Cobre/análisis , Grano Comestible/química , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminación Ambiental , Humanos , Lagos , Oryza/química , Medición de Riesgo , Suelo/química , Zinc
11.
Environ Pollut ; 249: 414-422, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30913440

RESUMEN

To better understand the Sb phytoavailability in rice, we studied Sb accumulation in rice (Zhongjiazao-17, widely cultivated in Hunan province) at different growth stages based on adding SbIII and SbV to waterlogged soils in 10, 50 and 100 mg kg-1 treatment levels. Proportional exogenous SbIII and SbV remained in the soil solution after equilibration. In SbIII treatments, the iron plaque (IP) amounts and Sb in rice roots sharply increased from tillering to jointing stages and then reduced at the following stages. However, in SbV treatments, they increased continuously from tillering to maturing stages. The accumulation trends of Sb in straws, ears and grains were consistent in SbIII and SbV treatments, rising from tillering to jointing stages followed with reducing from jointing to flowering stages slightly, and rising again significantly from flowering to maturing stages. The Tfsoil-grain values in all the Sb treatments were low (0.77 × 10-3-5.1 × 10-3), However, when Sb in waterlogged soils were higher than 50 mg kg-1, it could pose human health risk for residents.


Asunto(s)
Antimonio/análisis , Hierro/análisis , Oryza/química , Oryza/crecimiento & desarrollo , Contaminantes del Suelo/análisis , China , Humanos , Raíces de Plantas/química , Suelo/química
12.
Sci Total Environ ; 650(Pt 1): 546-556, 2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30205344

RESUMEN

Manganese oxides are naturally occurring powerful oxidants and scavengers, which can control the mobility and bioavailability of arsenic (As). However, the effect of synthetic nanostructured manganese oxides on the mobilization and transportation of As at actual paddy soils are poorly understood, especially in soils with low or medium background Mn concentration. In the present study, a novel nano manganese oxide with superior reactivity and surface area has been synthesized. A 90-d soil incubation experiment combined with pot and field rice cultivation trials were designed to evaluate the effectiveness of exogenous α-MnO2 nanorods on the mobilization and transportation of As in soil-rice systems. Our results proved that the addition of α-MnO2 nanorods can effectively control the soil-to-solution partitioning of As under anaerobic conditions. After treatment with different amounts of α-MnO2 nanorods, the content of effective As decreased, offset by an increase in residual As and insoluble binding As (Ca-As and Fe-As). Enhancing the oxidation of As(III) into As(V), the α-MnO2 nanorods increased the adsorption of As onto indigenous iron (hydr)oxides which greatly reduced the soil porewater As content. In addition, pot experiments and field applications revealed that the influx of As into the aerial parts of rice plants (stems, husk and leaves) was strictly prohibited after treatments with different amount of α-MnO2 nanorods; more interestingly, significantly negative correlations have been observed between As and Mn in rice, which indicated that as Mn is increased in soil, As in brown rice decreases. Our results demonstrated that the use of α-MnO2 nanorods in As polluted paddy soil containing low levels of background Mn oxides can be a promising remediation strategy.


Asunto(s)
Arsénico/metabolismo , Restauración y Remediación Ambiental/métodos , Compuestos de Manganeso/química , Nanotubos/química , Oryza/metabolismo , Óxidos/química , Contaminantes del Suelo/metabolismo , Adsorción , Arsénico/química , Disponibilidad Biológica , China , Compuestos Férricos/química , Nanotubos/ultraestructura , Oryza/química , Oxidación-Reducción , Componentes Aéreos de las Plantas/química , Componentes Aéreos de las Plantas/metabolismo , Suelo/química , Contaminantes del Suelo/química
13.
Chemosphere ; 213: 533-540, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30253325

RESUMEN

Co-contamination of arsenic (As) usually occurs with antimony (Sb) in Sb mine ores. However, the mobility and bio-availability of Sb and As in different types of mine impacted soils have received relatively little attention. This study aimed to investigate the fraction, mobility and removal of Sb and As in three types of polluted soils using environmentally friendly and cost-effective extractants. In the present study, lightly polluted (L), moderately polluted (M), and 3) highly polluted (H) soils were collected from the Xikuangshan (XKS) mine area in Hunan, China. Toxicity risk assessment, fraction and extraction of Sb and As were performed to evaluate Sb and As mobility and availability. According to the speciation fractions, the percent of residual Sb was larger than As in all studied soils, which suggested that As is far more mobile than Sb. Sb and As extractabilities from selected polluted soils were compared and ranked as: citric acid > tartaric acid > EDTA > HCl > Na2HPO4 > CaCl2. Citric acid showed the highest extractabilities for both Sb and As (up to 24% for total Sb and 41% for total As respectively). Moreover, obvious alteration of Sb and As fractionations in three types of soils were observed after chemical extractions. The mobility of Sb and As increased after extraction by citric acid and tartaric acid, suggesting that these organic acids can make soil trace metals more bio-available and that, Sb/As polluted soils can be remediated via phytoextraction.


Asunto(s)
Antimonio/aislamiento & purificación , Arsénico/aislamiento & purificación , Contaminantes del Suelo/aislamiento & purificación , Antimonio/análisis , Antimonio/farmacocinética , Arsénico/análisis , Arsénico/farmacocinética , Disponibilidad Biológica , China , Ácido Cítrico , Contaminantes del Suelo/análisis , Contaminantes del Suelo/farmacocinética , Tartratos
14.
Environ Geochem Health ; 40(6): 2383-2394, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29644506

RESUMEN

To provide information on reclamation of multi-heavy metal polluted soils with conception of phytostabilization, a field survey on the uptake and accumulation of potentially toxic elements such as antimony (Sb), arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) in colonized plant species around the world's largest antimony mine area, China, was conducted. Samples including leaves and shoots (including roots and stems) of colonized plants as well as rhizospheric soils were collected from eight sampling zones in the studied area. The results showed that the contents of Cu, Zn, and Pb in rhizospheric soils below plants were comparable to the corresponding background values of Hunan province, otherwise Sb, Cd, and As contents were extremely high (17-106, 17-87, and 3-7 times of the corresponding background values). The highest concentration of Sb was found in Aster subulatus (410 mg kg-1); Cd, As, and Zn were in Herba bidentis bipinnatae (10.9, 264, and 265 mg kg-1, respectively); and Cu was in Artemisia lavandulaefolia (27.1 mg kg-1). It also exhibited that all the contents of As in leaves were several times of those in shoots of plants, Cd and other heavy metals showed in a similar pattern in several studied species, implying that the uptake route of these heavy metals via foliar might contribute to the accumulation. With high bioconcentration factors of heavy metals (more than 1, except for Zn), together with the growth abundance, Herba bidentis bipinnatae was considered as the most suitable colonized species for phytostabilization of the multi-heavy metal pollution in soils on this antimony mine area.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales/metabolismo , Magnoliopsida/metabolismo , Metaloides/metabolismo , Metales Pesados/metabolismo , Antimonio , Transporte Biológico , China , Minería
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...